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Abstract Experimentation as a setting for learning demands adaptability on the part
of the decision-making system. It is typically infeasible for agents to have com-
plete a priori knowledge of an environment, their own dynamics, or the behavior
of other agents. In order to achieve autonomy in robotic applications, learning must
occur incrementally, and ideally as a function of decision-making by exploiting the
underlying control system. Most artificial intelligence techniques are ill-suited for
experimental settings because they either lack the ability to learn incrementally or
do not have information measures with which to guide their learning. This chapter
examines the Koopman operator, its application in active learning, and its relation-
ship to alternative learning techniques, such as Gaussian processes and kernel ridge
regression. Additionally, examples are provided from a variety of experimental ap-
plications of the Koopman operator in active learning settings.

1 Introduction

Machine learning techniques describe complex patterns in data. Many learning
methods, such as neural networks and convolutional networks, process large datasets
in order to develop models that describe causal relationships between data. How-
ever, what happens when one must gather data as a part of a real-time process?
How should one incorporate new data into models, and then leverage agency to fur-
ther improve them? The answers to these questions form the basis of the robotic
paradigm—sense, plan, act—and are at the heart of what defines autonomy.

In robotics, one is interested in endowing physical agents with the ability to rea-
son about uncertainty and to act in order to achieve a goal. The experimental nature
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of this process necessitates learning frameworks capable of incremental adaptation,
such that an agent is able to gather new information and use it to its advantage. We
refer to the process in which an agent selectively seeks out new information relevant
to better achieving a goal as active learning.

Not all machine learning techniques are well-suited for active learning. Batch
learning processes requiring large amounts of training data are not useful in real-
time settings where learning is occurring at all times. For active learning purposes,
we need the ability to incrementally update models to avoid recomputing the learned
model from scratch, which can be prohibitive. In order to develop principled ap-
proaches for incremental information acquisition, we need to quantify the model’s
information gain. We use the approximate Koopman operator as formulated in [41]
and used in our earlier work [2] as a model of choice, and apply it in active learning
settings.

While Koopman operators are the primary focus of this chapter, techniques such
as generalized linear regression, kernel ridge regression, and Gaussian processes are
often also applied as online learning tools in experiments. Specifying the theoretical
and practical relationships between these methods is important to understanding the
qualities of good active learning techniques. By developing a set of assumptions
under which these methods are equivalent, one can transfer techniques developed
for one method to another.

In Section 2, we describe the Koopman operator as a technique for active learn-
ing. In Section 3, we consider generalized linear regression, kernel ridge regres-
sion, and Gaussian processes as alternative techniques for experimental learning,
and compare them to approximate Koopman operators, both in theoretical terms and
computational implications. In Section 4, we illustrate the Koopman operator’s use
in experimental settings. In Section 5, we conclude with a discussion of what makes
the Koopman operator a good system representation in active learning settings.

2 Koopman Operator

The Koopman operator is an infinite-dimensional linear operator capable of de-
scribing the time-evolution of any observable dynamical system [22]. We consider
discrete-time dynamical systems described by

xk+1 = S(xk) = xk +
∫ tk+∆ t

tk
F(x(τ))dτ, (1)

where the F is the vector field of the continuous dynamical system, which evolves
on a state-space manifold M such that S : M →M. The right-hand side is a
continuous-time system discretized with sampling interval ∆ t.

The Koopman operator is a linear operator that describes the time-evolution of
basis functions instead of states. This shifts the system representation from state-
space to an infinite-dimensional function space. Figure 1 shows the relationship
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Fig. 1 Schematic of the relationship between a nonlinear dynamical system and its corresponding
Koopman operator representation. Given a nonlinear system in n-dimensional state-space as shown
in (a), the Koopman operator is a linear representation of the system in an infinite-dimensional
function-space, shown in (b). The map Ψ lifts the original system onto an infinite-dimensional
function-space. In this function-space, the Koopman operator, U , is a linear transformation repre-
senting the system dynamics.

between a dynamical system S(x) and its corresponding Koopman operator U . For
a detailed analysis of the Koopman operator and its properties, we refer the reader
to Chapter 0, as well as [7].

2.1 EDMD Approximation

The Koopman operator itself is not a learning tool; it is an alternative representa-
tion of dynamical systems. However, numerically synthesizing an approximation
of this representation in finite dimensions from data is a learning problem. In or-
der to implement Koopman operators in computational applications, one gener-
ates finite-dimensional approximations. While certain systems can be represented
by an exact, closed-form, finite-dimensional Koopman operator, this is generally
not the case [20]. Dynamic Mode Decomposition (DMD) [33] and Extended Dy-
namic Mode Decomposition (EDMD) [41] are methods developed for approximat-
ing Koopman operators in finite dimensions and are commonly applied in fluid dy-
namics as analytical tools [26].

EDMD synthesizes a data-driven Koopman operator by developing a mapping
that tries to span a finite-dimensional subspace of a given function space using
a finite set of basis functions. Given basis functions Ψ(x) = [ψ1(x), ...,ψN(x)]T ,
s.t. {ψi(x) :M→ R, ∀i} and a dataset of sequential observations X = [x1, ...,xM],
we can generate an approximate Koopman operator, U, to describe the evolution of
the lifted system

Ψ(xk+1) = UΨ(xk)+ ε, (2)
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such that ε ∼N (0,σ2), whereN is a multivariate Gaussian distribution with mean
and variance 0,σ2 ∈ RN . The corresponding approximate Koopman operator is
given by the solution to the optimization

min
U

1
2

M−1

∑
k=1

||Ψ(xk+1)−UΨ(xk)||2 (3)

which has closed form solution
U = AG†, (4)

where † denotes the Moore-Penrose pseudoinverse and the individual matrix com-
ponents are

G = G[M] =
1
M

M−1

∑
k=1

Ψ(xk)Ψ(xk)
T

A = A[M] =
1
M

M−1

∑
k=1

Ψ(xk+1)Ψ(xk)
T . (5)

2.2 Incremental Updates

The closed-form solution in (5) is of particular interest because it can be modified for
incremental updates [1, 18]. We can define a set of difference equations describing
an incremental update to the Koopman operator after a new observation

G[M+1] = G[M]+
1

M+1
(Ψ(xM)Ψ(xM)T −G[M])

A[M+1] = A[M]+
1

M+1
(Ψ(xM+1)Ψ(xM)T −A[M]), (6)

where we can calculate the updated Koopman operator with

U[M+1] = A[M+1](G[M+1])†. (7)

This formulation does not scale in complexity with the number of measurements
since the pseudoinverse computation complexity scales with respect to the num-
ber of basis functions considered. The difference equation (6) describes an implicit
cumulative average of all measurements. However, it is possible to perform incre-
mental updates to the Koopman operator using other difference equations, such as
moving average filters, exponential moving average filters or Kalman filters [16, 14].
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2.3 Formulation for Control

In order to apply the Koopman operator in experimental settings, we can formulate
the operator for real-time control [6]. By considering control inputs as a part of
the measurement vector, we can split the basis functions Ψ(x,u) into Ψ(x,u) =
[Ψx(x)T ,Ψu(x,u)T ]T , where {Ψx(x) :M→ RNx} and {Ψu(x,u) :M→ RNu} such
that N = Nx +Nu. As a result, the corresponding data-driven Koopman operator can
be split into submatrices

U =

[
Kx Ku
Kux Kuu

]
. (8)

Using these submatrices we can formulate the time-evolution of state observables
with control [2]

Ψx(xk+1) = KxΨx(xk)+KuΨu(xk,uk). (9)

Additionally, when considering the evolution of observables that depend on input,
the following equation holds

Ψu(xk+1,uk+1) = KuxΨx(xk)+KuuΨu(xk,uk). (10)

It is worth noting a couple special cases of (9). For the case in which Ψu(x,u) is
linear in u the equation becomes

Ψx(xk+1) = KxΨx(xk)+ K̂uuk, (11)

where K̂u = Ku
∂Ψu(xk,uk)

∂u . Then for the case in which Ψu(x,u) is linear in u and does
not depend on the state the equation is

Ψx(xk+1) = KxΨx(xk)+Kuuk. (12)

This formulation in (12) of the Koopman operator for control systems enables us
to easily incorporate it into classical control schemes such as optimal control, or
other model-predictive frameworks [23]. Alternative data-driven formulations of the
Koopman operator for control have been described in the work of [20].

In optimal control, we seek to specify control laws that best drive systems to-
wards a desired goal state with respect to an objective. For a discrete-time linear
quadratic (LQ) control problem with goal state xd , we can define an objective func-
tion of the following form over the iterate k

J =

∞

∑
k=0

(Ψx(xk)−Ψx(xd))
T Q(Ψx(xk)−Ψx(xd))+uT

k Ruk, (13)

where Q and R are positive semi-definite matrices that specify weights on system
states and control effort, respectively. Deriving an optimal solution to this LQ prob-
lem leads to a feedback law

uLQK =−FLQK (Ψx(x)−Ψx(xd)) (14)
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such that the optimal feedback gain FLQK is

FLQK = (R+KT
u PKu)

−1KT
u PKx, (15)

where P is the solution to the discrete-time algebraic Ricatti equation. Through this
process, we can solve optimal control problems with data-driven Koopman mod-
els [6, 20].

Additionally, given Koopman operator dynamics of the same form as (12), we
note that system derivatives with respect to basis functions of state and control are
linear:

d
dΨx

(
Ψx(xk+1)

)
= Kx,

d
du
(
Ψx(xk+1)

)
= Ku. (16)

The quality of a data-driven model is dependent on the amount of information
captured about the underlying system. In order to determine how much information
is captured by system models, we must develop a means of quantifying information
with respect to the model.

2.4 Information Measures

Active learning is a process by which an agent can acquire more information about
a task and improve its performance. Through experimental learning, we are inter-
ested in improving our system models such that we maximize task performance. In
order to actively acquire information, we must develop information measures with
respect to our system model. Fisher information provides a means of measuring the
amount of information that a random variable carries about parameters [10]. Given
a Koopman operator submatrix Kx from a system specified as (9), we model each of
its elements as a normally distributed parameter K(i, j)

x ∼N (µ i j,Σ
2
i j), and compute

the Fisher information

I(Ψx(x)) =
∂Γ T

∂k
Σ
−1 ∂Γ

∂k
, (17)

where k = {K(i, j)
x : (i, j) ∈ {1, ...,Nx}×{1, ...,Nx}}, Γ ∈ RNx is the measurement

model defined by Γ = KxΨx(x), and Σ ∈RNx×Nx is assumed to be constant. The ma-
trix Σ is the measurement covariance that can be empirically estimated from sample
data a priori. The matrix ∂Γ

∂k
∈ RNx×(Nx·Nx) encodes measurement sensitivities to all

elements of the Koopman operator. The sensitivity matrix takes the form

∂Γ

∂k
=


Ψx(x)T 0 ... 0

0 Ψx(x)T ... 0
...

. . .
0 ... Ψx(x)T

 , (18)
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where 0 ∈ R1×Nx . We now optimize the trace of the Fisher information matrix, also
known as T-optimality [36], to approximate information gain

tr(I(Ψx(x))) =
Nx

∑
i=1
||Ψx(x)||2

Σ
−1
ii

. (19)

We introduce (19) into a control objective by assigning a cost q to the inverse of the
Fisher information

J =

∞

∑
k=1

q tr(I(Ψx(xk)))
−1 + ||Ψx(xk)−Ψx(xd)||2Q + ||uk||2R . (20)

Using the cost functional in (20) we synthesize information maximizing trajectories
and continuously improve our Koopman operator representation of the dynamics,
as shown in [1]. The simplicity of the Koopman operator’s measurement model Γ

makes it easy to develop information measures with respect to the generated model.

2.5 Formulation for Hybrid Systems

Robotic systems often have discontinuous dynamics because of impacts and inter-
mittent contact, leading to hybrid dynamics. Hybrid system dynamics are defined
piecewise, where an indicator function determines which hybrid mode will evolve
the current state. These dynamics are formulated as

S(x) =



S1(x), if Φ(x) = 1
...

...
Si(x), if Φ(x) = i
...

...
SB(x), otherwise

(21)

where each Si(x) represents the dynamics of states x ∈Rn at mode Φ(x) = i. Addi-
tionally, at each hybrid mode boundary there is a discontinuous map between modes.
Assuming that Φ(x) is known a priori, it is possible to compute a Koopman oper-
ator Ui to represent each hybrid mode. We can specify a hybrid Koopman operator
using

U(x),Ψ(x) =



U1(x),Ψ1, if Φ(x) = 1
...

...
Ui(x),Ψi, if Φ(x) = i
...

...
UB(x),ΨB, otherwise

(22)
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where we characterize the discontinuous jumps between hybrid modes by collect-
ing data at the mode boundaries and using Ψ ∗i (x

+
k ) =Ψ ∗i (x

−
k )U

∗
i . Given that these

jumps in state often take place over very small time scales, it may be difficult to
gather enough data to provide a robust Koopman operator for that mapping. Active
excitation methods might be necessary in order to properly characterize transitions.
Alternative treatments of the Koopman operator have looked into modeling and an-
alyzing switched [31], hybrid [15], and distributed systems [17].

The Koopman operator’s linearity, ability to update incrementally, and ease of
generating information measures make it a good choice of data-driven model repre-
sentation for experimental settings. However, the operator’s performance is depen-
dent on the suitability of the chosen basis functions, which may not be known ahead
of time.

Though the model representation is different, data-driven Koopman operator syn-
thesis, as formulated in EDMD, solves a similar least-squares optimization as alter-
native regression models, such as generalized linear regression, kernel ridge regres-
sion, and Gaussian processes. Characterizing the conditions under which these mod-
els are equivalent to one another can help expand understanding of both Koopman
operators synthesis and alternative learning methods. Under certain sets of assump-
tions, methods developed for Koopman operators synthesized via EDMD apply to
the alternatives, and vice versa.

3 Alternative Methods

While the Koopman operator is neither a function approximation technique nor a
regression tool, EDMD, as formulated in Section 2.1, is both [41]. In Section 2 we
proposed that the EDMD approximation of the Koopman operator is well-suited
for active learning. In principle, other function approximation techniques can be
applied to generate finite Koopman operators. However, EDMD is the most common
Koopman operator synthesis technique, and as such it is of interest to explicitly
relate it to alternative machine learning techniques.

We show that under certain assumptions generalized linear regression, kernel
ridge regression, and Gaussian processes solve the same underlying optimization
problem as EDMD and can be formulated similarly. By understanding these rela-
tionships, we can apply techniques formally developed for one method to others,
and vice versa. Through these equivalences we can extend the active learning tech-
niques developed for the Koopman operator in Section 2 to other methods. We first
provide a review of generalized linear regression, kernel ridge regression, and Gaus-
sian processes, then establish the relationships between them.



Experimental Applications of the Koopman Operator 9

3.1 Generalized Linear Regression

Linear regression and online linear regression have long been applied for statisti-
cal analysis of sequential models [34]. Linear regression models are typically lim-
ited to describing a function y = f (x), s.t. x,y ∈ RS as linear combinations of in-
puts y = WT x, where we find W ∈ RS×S to minimize an error metric. General-
ized linear regression extends this approach to consider nonlinear functions of state,
such that we are performing a linear regression in a given feature space defined
by the basis functions, where the features are the basis functions. Given a dataset
with inputs X = [x1, ...,xM], outputs Y = [y1, ...,yM], and a set of basis functions
Ψ(x) = [ψ1(x), ...,ψN(x)]T s.t. {ψi(x) : RS → R, ∀i}, we consider the set of can-
didate functions defined by linear combinations of the basis functions subject to
zero-mean Gaussian noise ε with variance σ2

y = WT
Ψ(x)+ ε. (23)

We can minimize over the least-squares error functional

min
W

1
2

M−1

∑
k=1
||yk−WT

Ψ(xk)||2 (24)

to obtain a closed-form solution using maximum likelihood estimation [5]. We de-
fine the design matrix as

Φ = [Ψ(x1), ...,Ψ(xM)]T ∈ RM×N (25)

which allows us to express the closed-form solution of (24) as

W = (ΦT
Φ)−1

Φ
T Y, (26)

where Y = [y1, ...,yM]T . We note that (26) is equivalent to

W =

M−1

∑
k=1

(Ψ(xk)Ψ(xk)
T )−1(Ψ(xk)

T yk). (27)

We also note that for autoregressive models where yk =Ψ(xk+1)

Ψ(xk+1) = WT
Ψ(xk)+ ε. (28)

3.2 Kernel Ridge Regression

Kernel ridge regression reframes the generalized linear regression problem by con-
sidering infinite-dimensional feature spaces specified by kernels. Features are ob-
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served properties or characteristics of a phenomenon [5]. A feature space is then
the space formed by all features considered. A kernel is a generalized inner prod-
uct between vectors in a feature space. Finite-dimensional kernels can be specified
directly in terms of a choice of basis functions

k(x,x′) = 〈Ψ(x),Ψ(x′)〉, (29)

where the basis functions are a nonlinear transformation into a feature space. Ker-
nels can implicitly define inner products in infinite-dimensional spaces without hav-
ing to directly project coordinates into the feature space. The most common infinite-
dimensional kernel of choice is the radial basis function kernel, also known as the
Gaussian kernel [5]

k(x,x′) = e−
1

2σ2 ||x−x′||2
. (30)

The sense in which the Gaussian kernel represents an inner product in an infinite-
dimensional space can be understood by examining its Taylor series expansion. The
Gaussian kernel is shown below as an infinite-dimensional polynomial kernel, with
σ2 = 1

2 for simplicity:

k(x,x′) = e−||x−x′||2

= e−(x
T x+2(xT x′)+(x′)T x′)

= (e−xT x)(e(x
′)T x′)

∞

∑
n=0

(2xT x′)n

n!

= C(x,x′)
∞

∑
n=0

2n

n!
〈x,x′〉n, (31)

where C(x,x′) is some constant value dependent on x and x′ that does not affect the
Taylor expansion. Equation (31) shows that the Gaussian kernel is an inner prod-
uct over the infinite-dimensional space of polynomial functions, where polynomial
functions of the input vector are considered as features.

Ridge regression, also known as L2-norm regularized generalized linear regres-
sion, extends the least-squares residual minimization problem described in (24) by
including a regularization term over the model weights. Solutions with low weight
magnitudes are given preference to prevent overfitting of the model. For a dataset
with inputs X = [x1, ...,xM] and outputs Y = [y1, ...,yM], the ridge regression opti-
mization is given by

min
W

1
2

M−1

∑
k=1
||yk−WT

Ψ(xk)||2 +
λ

2
||W||2F , (32)

where λ > 0 is a regularization parameter specifying a cost on the magnitude of the
model weights, and || · ||F represents the Frobenius matrix norm.

Using the design matrix Φ in (25), we can write down a closed-form solution to
the minimization in (32)
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W = (ΦT
Φ +λ I)−1

Φ
T Y. (33)

We refer to this solution as the primal solution to the ridge regression estimation
problem.

Kernel ridge regression is based on an alternative representation of the solution
to the ridge regression problem that enables application with infinite-dimensional
kernels. The primal solution to the ridge regression problem scales in complexity
with the number of basis functions used, which makes it unable to consider high-
dimensional feature spaces. However, we can manipulate (33) to get an equivalent
representation, which we will refer to as the dual solution

W = Φ
T (ΦΦ

T +λ I)−1Y. (34)

We define B = (Gr +λ I)−1Y where Gr is the Gram matrix, such that W = ΦT B.
The Gram matrix is a matrix containing all inner products between points in a
dataset as specified by a given kernel k(x,x′), such that Gr

(i, j) = k(xi,x j), ∀i, j ∈
{1, ...,M}. In this case, Gr = ΦΦT due to the choice of kernel in (29). If we con-
sider W as the primal weight matrix, we can refer to B as the dual weight matrix
and use it to formulate our estimate as a function of the kernel choice [27]

ŷ = Ψ(x′)T W (35)
= Ψ(x′)T

Φ
T B

= k(x′)T B
= k(x′)T (Gr +λ I)−1Y, (36)

where k(x′)=ΦΨ(x′)= [k(x1,x′), ...,k(xM,x′)]T . The kernel ridge regression func-
tion prediction scales in complexity with the number of data points, and as such is
not suitable for incremental learning. Equation (36) enables us to analyze the models
in infinite-dimensional feature spaces using kernels, which is beneficial in different
settings. This kernel-based representation is how kernel ridge regression is most of-
ten applied. However, kernel ridge regression can also be formulated recursively and
applied in online learning [9, 12].

3.3 Gaussian Process Regression

Until this point, we have only considered non-probabilistic models for regression in
active learning. In some settings, randomness and uncertainty are inherently present
in state measurements and as such require models that incorporate uncertainty into
their predictions. Stochastic processes, such as Gaussian processes, specialize in
describing systems that probabilistically evolve over time [14].

A Gaussian process is a stochastic process where any collection of random vari-
ables drawn are jointly Gaussian. This is to say that any finite set of random vari-
able observations will be distributed according to f (x1, ...,xM)∼N (µ,Σ), s.t µ ∈
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RM, Σ ∈ RM×M . We specify a Gaussian process by defining its mean and covari-
ance functions, m(x) and k(x,x′). Covariance functions describe a similarity mea-
sure between features in an infinite-dimensional function space, and are equivalent
to positive-definite kernel functions [32]. Given a Gaussian process f (x)

f (x) ∼ GP(m(x),k(x,x′)) (37)
m(x) = E[ f (x)]

k(x,x′) = E[( f (x)−m(x))T ( f (x′)−m(x′))].

Gaussian process regression specifies an approximated function by expressing a
predictive distribution over a function space based on observations of realized ran-
dom variables. This predictive distribution p( f (x′)|X,Y) is also known as a poste-
rior, and can be computed given inputs X = [x1, ...,xM] and outputs Y = [y1, ...,yM]
through a Bayesian inference framework

posterior =
prior× likelihood

marginal likelihood

p( f (x)|X,Y) =
p( f (x))p(Y|X, f (x))∫

p(Y| f (x),X)p( f (x)|X)d f (x)
. (38)

By exploiting properties of the Gaussian distribution one can avoid explicitly com-
puting the posterior in (38). We use the fact that conditioning and marginalizations
of Gaussian distributions are other Gaussians with closed-form solutions [32]. With-
out imposing any prior belief on the function space this problem is ill-posed. We will
consider processes of the form yk = f (xk)+ ε with ε ∼ N (0,σ2). As a prior, we
restrict the set of functions considered to y=WTΨ(x)+ε such that W∼N (0,ΣW)
with zero mean for notational simplicity. We can see that the mean and covariance
functions are then

m(x) = E[ f (x)] = E[WT ]Ψ(x)+E[ε] = 0 (39)
k(x,x′) = E[ f (x)T f (x′)] =Ψ(x)TE[WWT ]Ψ(x′)+E[εT

ε] =Ψ(x)T
ΣWΨ(x′)+σ

2.

Given a design matrix as defined in (25), one can use the mean and covariance
functions to define a Gaussian processes f (x) ∼ GP(m(x),k(x,x′)). To generate
a predictive distribution, we then define a joint Gaussian distribution between the
input dataset’s design matrix Φ and a new observation Ψ(x′)[

f (X)
f (x′)

]
∼N

(
0,
[

k(Φ ,Φ) k(Φ ,Ψ(x′))
k(Φ ,Ψ(x′))T k(Ψ(x′),Ψ(x′))

])
, (40)

where the design matrix autocovariance is k(Φ ,Φ) ∈ RM×M , and the covariance
between the design matrix and the new observation k(Φ ,Ψ(x′)) ∈ RM . We then
express these covariances in closed form
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f (X)
f (x′)

]
∼N

(
0,
[

ΦΣWΦT +σ2I ΦΣWΨ(x′)+σ21
(ΦΣWΨ(x′))T +σ21T

Ψ(x′)T ΣWΨ(x′)+σ2

])
, (41)

where 1 ∈ RM , and I is the identity matrix. Equation (41) allows us to calculate a
predictive posterior distribution for new observations of f (·) by marginalizing over
the design matrix Φ and outputs Y [39]. The predictive posterior distribution is then
of the form

f (x′)|Φ ,Y ∼ N (E[ f (x′)],V[ f (x′)]) (42)
E[ f (x′)] = Ψ(x′)T

ΣWΦ
T (ΦΣWΦ

T +σ
2I)−1Y

V[ f (x′)] = Ψ(x′)T
ΣWΨ(x′)−Ψ(x′)T

ΣWΦ
T (ΦΣWΦ

T +σ
2I)−1

ΦΣWΨ(x′).

This posterior distribution enables us to generate predictions for new observations,
as well as specify a covariance for each point [32].

Although we have constructed our derivation using a finite-dimensional ba-
sis representation, Gaussian processes are typically implemented using infinite-
dimensional kernels. By following the same procedure shown in Section 3.2, ker-
nelization is trivial, and results in the following predictive distribution in terms of a
specified kernel:

f (x′)|Φ ,Y ∼ N (E[ f (x′)],V[ f (x′)]) (43)
E[ f (x′)] = m(x′)+k(x′)T (Gr +σ

2I)−1(Y−m(X))

V[ f (x′)] = k(x′,x′)−k(x′)T (Gr +σ
2I)−1k(x′),

where we have added the mean function m(x) for generality. The case in which
m(x) = 0 is referred to as a centered Gaussian process. This kernelized representa-
tion of the Gaussian process is not well-suited for active learning settings. In order to
overcome this limitation, there has been work in deriving local models for real-time
applications [29].

3.4 Relationships Between Learning Techniques

Now that we have reviewed the foundations of generalized linear regression, ker-
nel ridge regression, and Gaussian processes, we can examine their relationships
to EDMD approximations of Koopman operators, as well as to one another. We
develop assumptions for which these techniques are equivalent to one another.

3.4.1 Generalized Linear Regression

For finite-dimensional bases, generalized linear regression is most closely related to
EDMD. By limiting the functions we are willing to model to autoregressive func-
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tions, we can make the substitution yk = Ψ(xk+1) in (27). Then, if we note that
A† = A−1 when A is square, we can restate (27) in relation to the Koopman opera-
tor matrix components in (5)

W =

M−1

∑
k=1

(Ψ(xk)Ψ(xk)
T )†(Ψ(xk)

T
Ψ(xk+1))

= ((G[M])†)T (A[M])T = (A[M](G[M])†)T

= UT . (44)

Thus, generalized linear regression models are equivalent to finite-dimensional
Koopman operators synthesized through EDMD for the same set of basis functions.
This should not be surprising since Koopman operator synthesis via DMD [33, 38]
and EDMD [41] is formulated as a regression problem.

The correspondence between these techniques indicates that all methods devel-
oped in Section 2 apply to generalized linear regression, and vice versa. This means
that generalized linear regression models can be applied in control, represent hy-
brid systems, update incrementally, and have information measures easily gener-
ated, which makes them suitable for experimental settings.

3.4.2 Kernel Ridge Regression

Kernel ridge regression models are closely related to generalized linear regression
models, and consequently Koopman operators. Ridge regression solves a slightly
different optimization problem than EDMD, as shown in (32). However, for the
case of λ = 0 the ridge regression optimization is equivalent to that of generalized
linear regression and EDMD, as shown in (24).

For finite dimensional kernels of the form k(x,x′) = 〈Ψ(x),Ψ(x′)〉, s.t. Ψ(x) ∈
Rn, we have shown that the solutions in (34) and (33) are equivalent in Section 3.2.
For λ = 0, (33) is equivalent to the generalized linear regression solution in (26),
which we have shown in the previous section to be the same as that of EDMD.
This is to say that the kernel ridge regression estimate can be equivalent to the
Koopman operator’s estimate derived in Section 2.1 for finite-dimensional kernels
with a regularization coefficient of zero. In this limited representation, kernel ridge
regression models can be computed in real time. However, it is important to note
that kernel ridge regression without infinite-dimensional kernels or regularization is
not how the technique is typically implemented, and does not take advantage of the
compactness of kernel representations for high-dimensional data.

As shown by the work of [42], Koopman operators can be synthesized us-
ing infinite-dimensional kernel methods at the expense of growing computational
complexity with additional samples. In this kernel-based representation, the Koop-
man operator estimate is equivalent to (36) for λ = 0. While the choice of finite-
dimensional or infinite-dimensional kernel impacts online learning, the regulariza-
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tion coefficient does not. Hence, regularization coefficients may be used to promote
sparsity in Koopman operators, which may be desirable in some settings.

3.4.3 Gaussian Processes

Despite Gaussian processes being stochastic, they are closely related to kernel ridge
regression. By examining the Gaussian processes’ mean function in (43) we see
that it is equivalent to the kernel ridge regression prediction in (35) given that we set
σ2 = λ , ΣW = I, and assume the Gaussian process is centered, with W as defined
in (34). In order for the equivalence to hold between typical kernel ridge regression
models and Gaussian processes, we ignore the process covariance estimate and se-
quential Bayesian model updates. However, recent work in Bayesian kernel ridge
regression models has shown that they are equivalent to Gaussian processes when
the Gaussian process covariance estimate is fixed [40].

The correspondence between Gaussian process regression models and Koopman
operator synthesis follows from EDMD’s relationship to kernel ridge regression as
described in the previous section. By setting σ2 = 0 and ΣW = I the mean estimate
from the Gaussian process regression matches the EDMD solution. However, by
doing this we remove all non-determinism from the function approximation which
makes it fundamentally not a Gaussian process. We note that the role σ2 plays is
very similar to that of λ in kernel ridge regression, which indicates that it may
be incorporated in the EDMD Koopman operator synthesis process. By increas-
ing σ2 one would prevent overfitting in the solution by promoting sparsity, and
consequently admit more variance. Typical implementations of Gaussian processes
scale in complexity with the number of data observed, and as such are not suit-
able for settings that demand incremental learning. Nonetheless, one can generate
information measures for Gaussian processes with stationary mean and covariance
functions [11].

Alternatively, generalized linear regression, kernel ridge regression, and DMD
can be derived through a Bayesian inference framework [5, 37], which suggests that
EDMD can be subject to a Bayesian treatment as well. It would be of interest to
show a direct correspondence between Bayesian representations of the Koopman
operator and Gaussian processes because of their relationship to neural networks.
Given a Gaussian prior over model weights, [28] showed that a single-layer neural
network with infinite bandwidth approximates a Gaussian process as a result of the
central limit theorem. This work was recently extended to describe the connection
between Gaussian processes and deep neural networks in [24]. Moreover, neural
networks have been applied both to Koopman operator synthesis [43], as well as
basis function dictionary learning [25]. The relationships outlined in this section
between Gaussian processes, neural networks and Koopman operators suggest a
deeper connection between these methods which remains an open problem.
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Generalized Linear Kernel Ridge Gaussian
Regression Regression Processes

Koopman U = WT λ = 0 σ2 = 0, ΣW = I
Operators k(x,x′) = 〈Ψ(x),Ψ(x′)〉 k(x,x′) = 〈Ψ(x),Ψ(x′)〉
(EDMD) Ignore covariance estimate

Table 1 Assumptions under which each alternative method presented in Section 3 is equivalent
to the EDMD estimate of a finite Koopman operator. As formulated, generalized linear regression
models are equivalent to the synthesized Koopman operator matrix. The kernel ridge regression
prediction is equivalent to that of EDMD when the regression regularization coefficient is 0, and
only for finite-dimensional kernels. The mean function estimate of a Gaussian process is equivalent
to an EDMD Koopman operator prediction when σ2 = 0, ΣW = I, for finite-dimensional kernels.

3.4.4 Summary

The assumptions under which generalized linear regression, kernel ridge regres-
sion, and Gaussian processes produce the same solutions to an estimation problem
as EDMD are summarized in Table 1. Approximate Koopman operators as formu-
lated in Section 2.1 are equivalent to generalized linear regression models. Kernel
ridge regression models can be made equivalent to a Koopman operator model un-
der a set of simplifying assumptions for finite kernel representations, as well as for
infinite-dimensional kernels by sacrificing online computation. Finally, the relation-
ship between Gaussian processes and EDMD approximations of Koopman opera-
tors follows from its correspondence with kernel ridge regression in deterministic
settings.

Although Gaussian processes and kernel ridge regression are often applied in
real-time settings, in their typical formulations they are unable to be updated in-
crementally and are ill-suited for active learning problems. However, generalized
linear regression models are compatible with experimental settings because of their
direct correspondence with EDMD. The correspondences between methods shown
throughout this section imply that there should exist settings in which learning tech-
niques such as Gaussian processes and deep neural networks can be made to learn
incrementally and with respect to an information measure. Additionally, the rela-
tionship between Gaussian processes and EDMD suggest that there should be a way
to formulate Koopman operator synthesis to incorporate uncertainty estimates for
predictions.

3.5 Example

Though the methods presented in this section are formulated through alternative
means, they all solve similar optimization problems. The primary difference be-
tween these methods is representation, which can lead to the formal optimization
being the same, but the implementation being different. Under a set of assumptions
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Fig. 2 Performance comparison between EDMD, Gaussian processes, and kernel ridge regression.
Each model was trained on the same dataset collected from a 4s trajectory of the free dynamics of a
double pendulum system with initial condition (θ1,θ2, θ̇1, θ̇2) = (0.8,0,0,0). Then, we calculated
the integrated mean squared error over a 3s prediction from each model of the double pendulum
dynamics over the entire {(θ1,θ2) : [−1,1]× [−1,1]} domain. Standard implementations of each
model were used so as to compare performance under typical usage.

we are able to relate the model representations of kernel ridge regression, Gaussian
processes, and EDMD. Although this is technically the case, these assumptions do
not represent typical use cases for these methods.

As a comparison between standard implementations of these methods, we gen-
erate three independent data-driven models of the dynamics of a double pendulum
system—one with Koopman operators, one with Gaussian processes, and one with
kernel ridge regression. We do not implement generalized linear regression because
we showed it to produce an equivalent model representation to the EDMD solution
in Section 3.4.1. We collected a training dataset consisting of a single 4s trajectory
taken from the double pendulum free dynamics sampled at 100Hz with an initial
condition of (θ1,θ2, θ̇1, θ̇2) = (0.8,0,0,0). We use the training dataset to instantiate
a Koopman operator, kernel ridge regression model, and a Gaussian process model.
The Koopman operator model is calculated using a second-order polynomial basis
of the double pendulum states, while both the kernel ridge regression model and
the Gaussian process use the Gaussian kernel shown in (30). The regularization
and variance parameters were selected by the Scikit-Learn software package [30]
via Bayesian hyperparameter optimization [35]. Each model is then used to predict
double pendulum trajectories for a horizon of 3s from each (θ1,θ2) initial condition
over the {(θ1,θ2) : [−1,1]× [−1,1]} domain, with zero initial velocity. Then, we
calculate the integrated mean square error between each model’s prediction and the
actual dynamics over the entire horizon for each initial condition.

Figure 2 depicts the results of the comparison. The Koopman operator model
prediction has the lowest average error of the three models. We observe that both
the Gaussian process model and kernel ridge regression model prediction errors are
lowest at the initial conditions of the training trajectory (θ1,θ2) = (0.8,0), while
the Koopman operator model generalizes more easily over the domain. The purpose
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Fig. 3 Sphero SPRK robot
used for active learning of
system dynamics on sand.

of this comparison is to show that while these methods can be shown to be closely
related, standard implementations will produce very different results.

4 Experimental Applications

In this section, we demonstrate experimental applications of the Koopman operator
in a variety of examples. We highlight applications in which active learning enables
rapid system identification through information-driven incremental model updates.
Additionally, we show how the Koopman operator’s ability to represent hybrid sys-
tems enables the data-driven modeling of finite automata in experimental settings.

4.1 Learning Sphero SPRK Dynamics in Sand

We are interested in demonstrating the use of a Koopman operator applied to learn-
ing complex nonlinear dynamics in a real-time experimental setting. We use the
Sphero SPRK shown in Fig. 3, which is a programmable robotic toy shaped like a
small ball that can be teleoperated using a controller or app. It is actuated through
an internal mechanism designed for rolling on flat ground. If we change the system
dynamics by switching the rolling surface to sand the SPRK is incapable of rolling
with its default controller. To enable the SPRK to roll on sand, we use the Koop-
man operator for active identification of the robot’s dynamics on sand via real-time
information maximization as described in Section 2.4, and shown in [1].

We use a nonlinear model-predictive controller known as Sequential Action Con-
trol (SAC) [3] to generate information maximizing trajectories with respect to the
information objective (20), which we use to update our Koopman operator model
in real time using (7). Over a 20s period, we synthesize information maximizing
trajectories in order to characterize system dynamics on sand. After this period, we
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Fig. 4 Experimental application of active learning with Koopman operators for online learning of
the Sphero SPRK dynamics on sand. (a) Experimental setup consisting of a boxed area covered in
sand, with an overhead Xbox Kinect using OpenCV reporting state information. (b) Results from
trajectory tracking experiments in sand. The Sphero SPRK was used to track a "figure 8 trajectory
(black), using both an active learning approach with a continuously updating Koopman operator
(blue), and a pre-computed passive Koopman operator (red). While the fixed model establishes a
baseline performance, the active learning Koopman operator model continuously improves track-
ing performance as the experiment progresses.

switch objectives to a tracking objective such as (13) where we attempt to trace a
figure 8 trajectory in a sandbox while continuing to update the Koopman operator.
We compare the actively learned Koopman operator performance to a passive Koop-
man operator. The passive Koopman operator was computed from 20s of data from
tracing the figure 8 trajectory with open-loop control.

The experiment consists of a rectangular sandbox, with an Xbox Kinect mounted
overhead equipped with OpenCV providing odometry information. The system
states collected are x = [x,y, ẋ, ẏ]T where (x,y) are coordinates in the Kinect field
of vision and the corresponding velocities are estimated from finite differencing,
and we define our control signals within this representation as u = [ux,uy]

T . The set
of basis functions used to model the SPRK robot were

Ψx(x) = [x,y, ẋ, ẏ,1, ẋ2, ẏ2, ẋ2ẏ, ..., ẋ3ẏ3]T ∈ R18

Ψu(u) = [ux,uy]
T ∈ R2, (45)

which are linear combinations of third order polynomial basis functions of the ve-
locity states. The basis functions of control were chosen to be linear in u and not
dependent on state.

In Fig. 4 we show the experimental results resulting from the active and passive
Koopman operator learning approaches. The online learning approach is much more
effective at tracking the desired trajectory than the fixed learning approach. More-
over, we notice that as the experiment progresses, the active Koopman operator tra-
jectories continue to improve. The Koopman operator synthesized through active
learning required no a priori knowledge of the system dynamics, bootstrapped ini-
tial model guess, or specification of granular media physics. Despite the fact that
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Fig. 5 Quadcopter vehicle
model configuration in body-
fixed frame for active learning
of vehicle dynamics under
emergency conditions. The
quadcopter dynamics are de-
fined such that one motor has
an unspecified malfunction
and can only work at 80%
capacity.
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this problem could have been solved by other means, this experimental application
is facilitated by the Koopman operator model representation.

4.2 Rapid Quadcopter Stabilization with Active Learning

The Koopman operator’s ability to actively acquire information in real-time allows
us to approach problems that demand rapid reactive efforts. For settings in which
large disturbances permanently affect system dynamics, we must be able to quickly
develop new models to adapt to the disturbance while still achieving an underly-
ing goal. We demonstrate the Koopman operator’s quick adaptability by stabilizing
a simulated quadcopter with a motor malfunction. We define the quadcopter mal-
function as a single motor operating at 80% capacity. However, the malfunction is
unmodeled and unknown to the Koopman operator ahead of time, which means it
must be learned in real time in order to stabilize the quadcopter and prevent it from
falling, as shown in [1]. The quadcopter configuration is shown in Fig. 5, and the
system dynamics used to carry out this simulated experiment are

ḣ = h
[

ω̂ v
0 0

]
Jω̇ = M+Jω×ω

v̇ =
1
m

Fe3−ω×v−gRT e3, (46)

where the dynamics are defined on the Lie group h = (R,p) ∈ SE(3) in body-fixed
coordinates, where ω̂ is the angular velocity tensor of the vector ω , v is the vector
of linear velocities. The matrix J is the inertia tensor, m is the quadcopter mass, g is
acceleration due to gravity and e3 is a body-fixed vector shown in Fig. 5.

The inputs to the system are a control force F and control torque M, each of
which depend on the control vector u = [u1,u2,u3,u4] according to



Experimental Applications of the Koopman Operator 21

0

-5

-10

-15

Fig. 6 Quadcopter vehicle free-fall simulation where
one motor has an unmodeled malfunction. The goal is
to learn to stabilize the quadcopter under two learning
approaches. The first is a passive learning approach
(green) where a Koopman operator is learned online
over 1s while attempting to stabilize the quadcopter.
The second is an active learning approach (blue)
where a Koopman operator is generated while opti-
mizing Fisher information, then the system switches
objectives to achieve stabilization.

F = kt(u2
1 +u2

2 +u2
3 +u2

4)

M =

 kt l(u2
2−u2

4)
kt l(u2

3−u2
1)

km(u2
1−u2

2 +u2
3−u2

4)

 ,
with kt , km, l as model parame-
ters. Details regarding implemen-
tation of the quadcopter dynamics
are covered in [13].

The set of basis functions cho-
sen directly embed the quadcopter
dynamics, such that the Koopman
operator has a bootstrapped model
of the nominal system dynamics

Ψx(x) = [ag,ω,v,g(v,ω)]T ∈ R18

Ψu(u) = u ∈ R4,

where ag ∈R3 is the body-centered
gravity vector, and v, ω are as de-
fined above. The additional basis
functions g(v,ω) consist of all ele-
ments of the outer product between
the linear and angular velocity vec-
tors, and were chosen without any
a priori knowledge of the motor
malfunction specification

g(v,ω) = [v1ω1,v1ω2,v1ω3,

v2ω1,v2ω2,v2ω3,

v3ω1,v3ω2,v3ω3].

The experimental procedure consists of setting the quadcopter in free-fall from
some initial condition and for a period of 1s learning a Koopman operator online
with respect to a specified objective. Active learning trials applied an information
maximizing objective during the learning period, then switched to a stabilizing ob-
jective afterward. Passive learning trials followed a stabilizing objective for the en-
tirety of each trial. After the 1s learning period we did not continue to update the
operator online for either set of trials. A set of 100 Monte-Carlo trials over uniformly
distributed initial conditions were carried out. Figure 6 summarizes the experimental
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results. Figure 6A depicts timestamps from a pair of quadcopter trajectories under
active and passive learning.

In Fig. 6B we display the results from the Monte-Carlo trials. The active Koop-
man operator stabilized the quadcopter within 2.5s in over 65% of trials, while the
passive operator took another full second on average. Figure 6C shows the instan-
taneous information gain over the 1s learning period for both passive and active
learning approaches, where the active learning approach acquires orders of magni-
tude more information than the passive approach in a selected trial. Finally, Fig. 6D
depicts the stabilization error for a particular trial with passive and active learning.
The active learning trial stabilizes the quadcopter more quickly than the passive
learning approach and with lower error after the stabilizing objective switch.

Through this experiment, we have shown that the Koopman operator with active
learning can be used in time-critical applications. We introduced an unmodeled mo-
tor malfunction into the quadcopter dynamics and learned a Koopman operator in
real time in order to stabilize the system. We showed that by first executing informa-
tion maximizing trajectories prior to attempting to stabilize we outperform passive
online learning techniques.

4.3 Learning SLIP Hybrid Dynamics

Hybrid systems can be difficult to model because of inherent discontinuities in
the system dynamics. These discontinuities often cannot be represented by a sin-
gle model. Experimental learning in uncertain environments in the real world may
demand learning techniques that model such discontinuities. In particular, field
robotics often concerns itself with modeling locomotive systems, such as bipedal
or quadrupedal walkers. Walking robots deal with the discontinuities of impact at
each step of their locomotive cycle, and as such must have a way to reason about
them. The simplest dynamical walker model is the spring-loaded inverted pendulum
(SLIP) model, shown in Fig. 7.

The SLIP system dynamics are split into two hybrid modes: stance and flight. The
transition between these hybrid modes is described by an indicator function, often
referred to as a guard equation, which specifies the set of dynamics evolving the
system at a given coordinate in state-space. The system states are x = [x,y, ẋ, ẏ,x f ]

T ,
where (x,y) indicates the position of the mass in the configuration specified in Fig. 7,
and x f is the position of the SLIP model’s foot. The model’s control inputs are
u = [us,u f ]

T . The dynamics of the SLIP model are

fstance =


ẋ
ẏ

(k(l0− l(x))+us)
x−x f
ml(x)

(k(l0− l(x))+us)
y

ml(x) −g
0

 , f f light =


ẋ
ẏ
0
−g

ẋ+u f

 , (47)
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Fig. 7 SLIP model configura-
tion. The SLIP system obeys
a set of hybrid dynamics cor-
responding to the separate
stance and flight modes.

where l0 is the resting length of the spring, k its stiffness, and l(x)=
√

(x− x f )2 + y2

is its variable length [21]. Then, the indicator function is ΦSLIP(x) = sign(1− l0
l(x) )∈

{−1,1}. The complete hybrid dynamics are

fSLIP(x,u) =
{

fstance(x,u), if ΦSLIP(x) =−1
f f light(x,u), otherwise . (48)

We use the hybrid formulation of the Koopman operator as specified in Sec-
tion 2.5, as well as the analytical indicator function to actively learn a hybrid Koop-
man operator representation of the SLIP model in simulation. For the first 10s we
have a simulated SLIP hopper follow an information maximizing trajectory, where
each hybrid Koopman mode incrementally updates according to the indicator func-
tion. Following the active learning period, the objective changes and the model is
made to follow a forward hopping velocity of 4.2m/s. Results are shown in Fig. 8
where the hybrid Koopman model first maximizes information about its dynamics
for 10s, and then it moves forward tracking a trajectory. Figure 9 depicts the SLIP
hopper’s switch in objectives in terms of the model’s forward velocity.

The Koopman operator’s hybrid formulation enables modeling of discontinuous
dynamical systems, which is of great importance in the field of locomotion, but also
field robotics at large. Furthermore, the experiment presented an active learning
framework for characterizing hybrid dynamical systems with known guard equa-
tions that could be extended to other walking robots.

Fig. 8 Active identification of simulated SLIP system dynamics. The SLIP system first obeys an
information maximizing objective for 10s, and then the objective is changed to following a forward
velocity trajectory.



24 Thomas A. Berrueta, Ian Abraham, and Todd Murphey

Fig. 9 SLIP model objec-
tives. First, the SLIP hopper
follows an information maxi-
mizing objective for 10s while
learning a Koopman represen-
tation of its dynamics. Then,
the SLIP hopper uses this
model to carry out a forward
trajectory.

4.4 Generating Finite Automata via DSS

In Section 4.3 we discussed the importance of modeling hybrid system dynamics in
experimental field robotics. Although we were able to generate a hybrid Koopman
model for the SLIP hopper, we required a priori specification of the system’s indi-
cator function. The indicator function is not generally known ahead of time. Thus, it
is of interest to develop a systematic approach to identifying hybrid system dynam-
ics, as well as the underlying indicator function specifying state-space boundaries
between hybrid modes.

Hybrid dynamical systems are often represented as finite automata with discrete
and continuous components. While the structure of the hybrid automaton is discrete,
each of its nodes is a continuous dynamical system. The transitions are specified by
the indicator function and guard equations. This graphical model is a compact rep-
resentation of the system dynamics [19]. Dynamical System Segmentation (DSS),
proposed in [4], is an algorithm that generates state-space partitions of dynamical
systems from data, thereby generating a hybrid automaton. For hybrid systems, DSS
can identify the dynamics of each hybrid mode and generate an indicator function
from data. For non-hybrid systems, DSS synthesizes a finite automaton representa-
tion of the dynamics from data. The state-space continuous dynamics are partitioned
into a set of distinct dynamics governing a given region of the state-space manifold.

Given a dataset X = [x1, ...,xM] from some dynamical system and a set of basis
functions Ψ(x) ∈ RN , DSS synthesizes a set of Koopman operators from subsets
of the dataset Ui = GenerateKoopman(Xa:b), s.t. Xa:b = [xa, ...,xb]. The choice of
method for splitting the dataset X into subsets is left to the user. This set of W Koop-
man operators U = {U1, ...,UW} are each a local estimate of the system dynamics
for some neighborhood of the state-space manifold. However, given that this set U
may have redundancies we are interested in distilling a minimal set of Koopman op-
erators to represent the system dynamics. By considering each Koopman operator
Ui ∈ RN×N as points in RN2

space, we can use a clustering algorithm to construct
a set of exemplar operators U from the set U . We suggest nonparametric clustering
algorithms, such as HDBSCAN [8], in order to avoid presupposing a number of
clusters. We will consider the minimal set of operators U as a node set in a finite
automaton. To derive the edge set E = {(Ui,U j), ...}, we generate a support vector
machine (SVM), Π(Ψ(x)), using the labeled dataset X and determine state-space
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Fig. 10 Segmentation of a non-hybrid dynamical system into a hybrid automaton represented as a
graph. Each node in the graph is a distinct dynamical system represented by a Koopman operator
governing the system dynamics over a region of the underlying state-space manifold. The partitions
of the manifold are specified by an SVM model Π(Ψ(x)).

transitions between nodes [30]. This graphical model G = (U ,E) is the output of
DSS. Figure 10 depicts a notional example of DSS applied to some dynamical sys-
tem, as well as the relationship between the graph and the partitioned state-space
manifold.

To demonstrate the DSS algorithm’s performance in identifying hybrid systems
we applied DSS to a dataset of a simulated SLIP hopper as formulated in Section 4.3
following a forward constant velocity trajectory. Figure 11 depicts a successful iden-
tification of the bimodal SLIP dynamics purely from data without any prior knowl-
edge of the system dynamics. The data-driven SVM indicator function Π(Ψ(x))
correctly captures the SLIP system transitions between flight and stance modes.

Additionally, we segment non-hybrid systems to showcase the resulting finite de-
scriptions of state-space continuous systems. We use the well-studied cart-pendulum
inversion problem as an example. The cart-pendulum system, shown in Fig. 12, is
actuated about its horizontal axis and has θ = 0 defined at the unstable equilibrium
point. We used the same nonlinear model-predictive controller as in Section 4.1,
SAC, to synthesize a set of 30 trajectories with the goal of inverting and stabilizing
the cart-pendulum system. We then applied DSS to this dataset and found that the
pendulum inversion task could be segmented into three hybrid modes corresponding
to swing-up, slow-down, stabilization dynamics. The synthesized finite automaton
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Fig. 11 Dynamical system segmentation of the SLIP model system described in Section 4.3. The
DSS algorithm without any a priori knowledge of the SLIP system dynamics is able to discern
the two hybrid modes of flight and stance, as well as the indicator function that switches between
modes. The plot shows the position of the SLIP hopper’s mass color coded according to the hybrid
mode it is currently in. Green corresponding to flight, orange to stance.

resulting from DSS is shown in Fig. 13. Each node is accompanied by its corre-
sponding partition of the original dataset shown in the (θ , θ̇) phase plane.

Dynamical system segmentation is an extension of the hybrid dynamical formu-
lation of the Koopman operator described in Section 2.5, and showcased in Sec-
tion 4.3. DSS generates finite representations of dynamical systems from data with-
out any prior knowledge of the system. As an experimental tool, as was shown
in [4], DSS is capable of discerning complex relationships from motion data and
formulating them in a low-dimensional representation. Identification of discontin-
uous phenomena from data is of great importance in experimental settings where
environmental interactions are often difficult to model, and the Koopman operator
provides us with the ability to formulate algorithms to address this problem.

Fig. 12 Cart-pendulum sys-
tem used for DSS, with its
unstable equilibrium defined
at θ = 0.
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Fig. 13 Application of DSS to a set of 30 control solutions to the cart-pendulum inversion problem.
Each node in the generated graph represents a Koopman operator that describes the cart-pendulum
nonlinear dynamics over a particular region of the state-space manifold. Mode 0 corresponds to
energy pumping and swing-up, mode 1 corresponds to energy removal and slow-down, and mode
2 corresponds to stabilization.

5 Conclusion

Experimental learning is necessary for real-time contexts where the environment
and internal dynamics can change rapidly. The learning techniques we apply should
reflect that these settings demand incremental learning in time-varying environ-
ments, and most machine learning techniques do not. We have proposed the EDMD-
synthesized finite-dimensional Koopman operator as a technique well-suited to ex-
perimental settings and compared it to similar techniques to characterize their rela-
tionships. Moreover, we provide a set of conditions that specify the connection be-
tween EDMD and alternative learning methods. We highlight the synthesized Koop-
man operator’s capabilities in a variety of experimental applications. Modeling real
processes requires techniques capable of purposeful learning, and we propose the
Koopman operator as a suitable model representation for these settings.
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