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Emergent microrobotic oscillators via
asymmetry-induced order
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Spontaneous oscillations on the order of several hertz are the drivers of many
crucial processes in nature. From bacterial swimming to mammal gaits, con-
verting static energy inputs into slowly oscillating power is key to the auton-
omy of organisms across scales. However, the fabrication of slowmicrometre-
scale oscillators remains a major roadblock towards fully-autonomous
microrobots. Here, we study a low-frequency oscillator that emerges from a
collective of active microparticles at the air-liquid interface of a hydrogen
peroxide drop. Their interactions transduce ambient chemical energy into
periodic mechanical motion and on-board electrical currents. Surprisingly,
these oscillations persist at larger ensemble sizes only when a particle with
modified reactivity is added to intentionally break permutation symmetry. We
explain such emergent order through the discovery of a thermodynamic
mechanism for asymmetry-induced order. The on-board power harvested
from the stabilised oscillations enables the use of electronic components,
which we demonstrate by cyclically and synchronously driving a microrobotic
arm. This work highlights a new strategy for achieving low-frequency oscilla-
tions at the microscale, paving the way for future microrobotic autonomy.

The ability to produce low-frequency oscillations is central to the
autonomy of living beings, and is essential to key biological processes
such as heartbeats, neuron firings, breathing, and locomotion1–3. While
complex electronics operates at ever-increasing clock rates of many
gigahertz, the frequency of many important biological oscillations
seldomexceeds 100Hz. The slow rateof theseoscillations stems froma
need to be commensurate with both the energy budget and the natural
timescales of underlyingbiological processes, as in the transport ofCO2

in plants4 and in the galloping of horses5. Unlike oscillations arising
from external periodic forcing6–9, these self-oscillations emerge spon-
taneously from the balancing of competing dynamical processes driv-
ing systems away from equilibrium10–12—a signature of living systems13.

In artificial microsystems, however, the production of slow self-
sufficient self-oscillations is counterintuitively difficult14,15. Generat-
ing self-sustaining mechanical oscillations at the microscale typically
requires the transduction of complex chemical oscillators (e.g.,
Belousov–Zhabotinsky reaction16) into periodic changes to a sys-
tem’s physical configuration8,17–21. Alternative mechanisms for pro-
ducing self-sufficient mechanical oscillations, based on carefully
designed dynamic coupling between responsive elasticmaterials and
thermal12,22, chemical11,12,23, or moisture stimuli24, have typically been
demonstrated in millimetre-scale (and larger) devices. In contrast,
generating slow periodic electrical signals remains prohibitively
challenging aboard untethered microscale devices (Supplementary
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Note 3), given the limited downward scalability of capacitors and
inductors25,26, as well as the power and footprint demands of CMOS
oscillators, frequency dividers, and energy modules27–29. Despite
these challenges, recent progress has shown that self-sustaining
electrical oscillations can be produced by modulating electrical
resistance with mechanical feedback loops in carefully designed
devices, presenting a promising mechanism for sub-500 μm elec-
trical self-oscillators14.

In thiswork, insteadof relying on complex chemistries, integrated
electronics, or elaborate mechanical microstructures, we produce
robust electromechanical oscillations aboard a collective of decep-
tively simplemicroparticles by exploiting the self-organisedproperties
of their far-from-equilibrium dynamics. By breaking the permutation
symmetry of a homogeneous particle collective situated at an
air–liquid interface, we reliably control their dynamics to realise
simultaneous chemomechanical and electrochemical periodic energy
transduction. We achieve this by introducing a particle with an
enhanced reaction rate, whose stabilizing effect on the system beha-
viour we analyse through the lens of asymmetry-induced order. In
turn, through a simple bimetallic on-board fuel cell design, we trans-
duce the system’s self-oscillations into periodic electrical work to
power state-of-the-artmicrorobotic components, without the need for
batteries or external sources of energy.

Results
Emergent low-frequency oscillation
Figure 1 presents a system of simple microparticles where low-
frequency chemomechanical self-oscillations emerge from the cou-
pling of otherwise self-limiting catalytic reactions easily trapped at
equilibrium. Figure 1a shows that each of these microparticles, com-
posed of nothing more than a nanometre-thick Pt patch of radius
125μm microfabricated beneath a polymeric microdisc, generates a
gas bubble when placed at the curved air–liquid interface of a H2O2

drop via

H2O2 !
Pt

H2O+
1
2
O2: ð1Þ

This well-studied catalytic reaction has been a long-time favourite in
bothmicro-30–33 andmacroscopic robotics12,34, noted for the fuel’s high
energy density and simple chemistry34.

For a single microparticle situated at the interface, the chemical
reaction in Fig. 1a is self-limiting as the bubble grows and gradually
blocks off the fuel’s access to the catalyst. Consequently, the single-
particle system reaches its equilibrium state promptly: The micro-
particle remains motionless for a prolonged time (Fig. 1d, Supple-
mentary Movie 1) and the bubble asymptotically reaches a terminal
radius without rupture (Fig. 1c). However, a drastic change occurs
when a second identical particle is introduced to the system. Figure 1b
shows that as the microparticles enter each other’s proximity, the
separately-formed gas bubbles merge. The freed-up catalytic surface
area then disrupts the self-limiting chemistry, destabilizing the original
single-particle steady-state. This allows the merged bubble to grow
beyond its threshold, leading to its rupture (Fig. 1e, t = 3.2 s). The
collapse imparts an impulse onto themicroparticles and propels them
in opposite directions, atwhichpoint the particles are thendrawnback
towards one another by the restorational forces: First, the radial
component of buoyancy, Fg, globally directs the particles towards the
apex of the concave air–liquid interface9. Second, the local interfacial
deformations result in a mutual attractive capillary force Fc, affectio-
nately known as the “Cheerios effect”35,36. The combination of this
Cheerios effect and catalytic bubble generation has been observed to
produce repetitive back-and-forth motion37,38 in swarms of tubular
swimmers39,40. All of these factors sum up to a repeatable cycle of
mutual approach, contact, bubblemerger, andbubble collapse thatwe

refer to as particle beating (Fig. 1e). The robustness of this self-
sustained cycle is evidenced by the tracked coordinates of the two
particles over a course of 280 s (Fig. 1f and Supplementary Movie 2),
which contrast the single particle scenariowherepractically nomotion
was observed. Notably, while the central challenge in self-oscillatory
systems is to keep them away from equilibria11,15, such states are vir-
tually eliminated from our system by the effectively instantaneous
nature of bubble collapse.

Wemonitored the oscillatory behaviour of the system by tracking
its breathing radius r(t) over time, defined as

rðtÞ= 1
N

XN

i = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiðtÞ � xÞ2 + ðyiðtÞ � yÞ2

q
ð2Þ

for a collection ofN particles eachwith coordinate (xi(t), yi(t)) at time t.
In other words, r(t) is the Euclidean distance from the collective’s
centroid ðx, yÞ to each particle, averaged over all particles (see anno-
tations in Fig. 1e). The system’s periodic beating is evident in the time
evolution of r(t) (Fig. 1g, left panel), the limit cycle of its r(t) phase
portrait (Fig. 1h, “Methods”), as well as the narrow peak in the recur-
rence time histogram (Fig. 1i, “Methods”). Taken together, these ana-
lyses serve as conclusive evidence of the long-term stability of system
oscillations. The analysis in Fig. 1i shows a period of 3.2 s for the two-
particle system in 10.7 wt% H2O2, consistent with Fig. 1g and
Supplementary Movie 2. The period remains constant throughout as
revealed by the moving-window recurrence analyses (Supplementary
Fig. 6, “Methods”), since a negligible 0.02% of the fuel is consumed
over 280 s based on stoichiometry. Furthermore, the oscillation
amplitude and periodicity are shown to be resilient towards various
forms of perturbations (Supplementary Fig. 9). We developed a
mechanistic model based on calculated Fg, Fc, and the non-Stokesian
drag force Fd (Supplementary Note 1), and found that it captured even
the detailed dynamics of the breathing radius’ time evolution (Fig. 1g
right panel, also Supplementary Fig. 5). We verified the consistency of
the beating frequency across eight sets of independent experiments
with 10.7 wt% H2O2 in Fig. 1j. Additionally, the beating frequency’s
dependence on H2O2 concentrations points to a mechanism for
exerting fine control over the beating frequency, as predicted by our
mechanistic model based on a Langmuir–Hinshelwood kinetics of the
catalytic surface (Fig. 1j)41,42. In Supplementary Figs. 7, 8, we further
explored the dependence of the oscillation amplitude and frequency
on H2O2 volume and particle size. Of note, the stable emergent self-
oscillation presented in Fig. 1 does scale down to 250- and 100-μm-
diameter particles.

Persistent periodicity via symmetry-breaking
Our findings in Figs. 2 and 3 show that the stable emergent self-
oscillation can be extended well beyond N = 2, although curiously only
when the system’s permutation symmetry is broken and not in a
homogeneous system of identical particles. We extracted the bubble
burst interarrival time statistics by tracking the time that transpires
between each pair of consecutive bursts in recorded experiments
(Fig. 2a). In homogeneous systems of identical particles (Fig. 2b), we
show that the likelihood of periodic beating dwindles gradually with
rising particle counts N, reflected in the progressive decay in the
sharpness and amplitude of the initial 3.2 s peak corresponding to
periodic beating. The decay of collective periodicity is accompanied
by an increase in the probability mass of frequent and unpredictable
bubble bursts taking place less than a second from one another—a
result of bubblemergers and collapses among subsets of particles (see
representative N = 5 and 8 micrographs in Fig. 2b). Interestingly, we
find that the interarrival time distributions of systems beyond N = 7
become statistically indistinguishable from those of a Poisson process
(Fig. 2b, bottom panel)43. This shows that our system’s phenomenol-
ogy can remarkably vary from coordinated and reliable periodic
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beating to independent and effectively stochastic bubble bursts
merely as a function of N. The breathing radius trajectory in Fig. 2c
confirms the loss of periodicity, as no structure can be discerned from
the noisy low-amplitude fluctuations.

The gradual transition towards aperiodicity in Fig. 2b, c points to
the nominal fragility of periodic beating as the system size increases.
Reasoning that the deliberate introduction of heterogeneity has been
shown to produce asymmetry-induced order44 in complex networked
systems45–47, we investigated the effect of permutation symmetry-

breaking on the robustness of particle beating across system sizes.
Based on the role buoyancy plays in the beating physics (Supple-
mentary Note 1), we hypothesised that particles could be made
dynamically distinct from one another by controlling the relative size
of their accompanying bubble. We tested the impact of this hetero-
geneity on collective order with Rattling Theory48,49. This thermo-
dynamic theory explains the way in which correlations among driven
degrees of freedom give rise to system-level fluctuations that govern
the long-term stability of system configurations. The magnitude of

Article https://doi.org/10.1038/s41467-022-33396-5

Nature Communications |         (2022) 13:5734 3



these fluctuations, as quantified by Rattling R, serves as an index
describing the system’s degree of disorder. Since loweringR requires
substantial correlations among degrees of freedom, systems in low-R
configurations often exhibit emergent order.

We constructed a theoretical model that analytically connects a
bubble’s relative size with its contribution to system-level fluctuations,
and in turn collective order (Supplementary Note 2). The model’s
predictions in Fig. 2d suggest that any deviation in a single particle’s
bubble size relative to the rest of the ensemble (i.e., with relative burst
intensity away from 1x) results in a more orderly system as quantified
by lowerR. Interestingly, the reduction inR is found to be particularly
significant when a bubble larger (and stronger) than its peers is
introduced, which we confirmed with experiments. We note that this
novel mechanism for asymmetry-induced order applies to a broad
class of complex systems wherein parametric heterogeneities control
the fluctuations of strongly interacting elements (see Supplemen-
tary Note 2).

We broke the permutation-symmetry of the original system
experimentally by adding a “designated leader” (DL) particle with an
enlarged Pt patch of radius 175μm (Fig. 2e). Note that since the
nanometre-scale thickness of the Pt layer is negligible compared to
that of the unchanged 10-μm-thick polymericmicrodisc, the DL design
does not alter the particle’s volumetric geometry. However, the het-
erogeneity among the catalytic surface areas translates directly to
unequal bubble growth rates between the DL and its neighbours,
which in turn drastically affects their collective dynamics in accor-
dance with our theoretical predictions in Fig. 2d: We observe robustly
periodic bubble collapses acrossN in the sharppeaks of the interarrival
distributions in Fig. 2e, suggesting that DLs are able to sustain the
periodicity of particle beating even at high particle counts. Figure 2f
depicts the time evolution of the breathing radius for a system of
N = 7 + 1DL particles (see also Supplementary Movie 4). In contrast to
the homogeneousN = 8 system (Fig. 2c), the heterogeneous DL system
exhibits a stable long-termself-oscillationwith a periodof 14.2 s, owing
to the broken permutation symmetry.

Figure 3a(i–vii), b(i–vii) explains the microscale physics arising
from the intentionally broken symmetry (see also Supplementary
Movie 3). When a DL particle with an enlarged Pt patch is paired with
a non-DL particle, the heterogeneity in bubble sizes leads to the
subsumption of the non-DL particle bubble into the DL bubble upon
contact (Fig. 3a(ii–v) and b(ii–v)). This coalescence behaviour is dis-
tinct from that of equal-sized bubbles previously shown in Fig. 1b,
where an unstable merged bubble forms halfway between the parti-
cles. Instead, the merged bubble sticks to the former location of the
large parent bubble underneath the DL particle, seen in Fig. 3a(iii)
and (v). This behaviour falls under the sticking bubble regime in the
literature, a phenomenon long observed in experiments50,51 but only
recently thoroughly studied and theorised in a catalytic H2O2 bubble
system52. Importantly, contrary to the more intuitive moving bubble
regime where the merged bubble sits at the centre of mass of its
parents53,54, the coalescence behaviour transitions into the sticking

regime only as the parent bubbles differ sufficiently in size52, or, in
other words, with sufficient particle heterogeneity. As shown in the
rest of Fig. 3a, b, the two particles in the system undergo several
rounds of small-scale bubble coalescence, eventually causing the DL
bubble to collapse. We find that the bubble’s rupture radius is
approximately 1.7 times larger than that for a homogeneous system
shown in Fig. 1f, stabilised by the particle sitting directly on top. This
contributes to an even lower-frequency chemomechanical oscillation
(Figs. 2f and 3f) than that previously observed in homogeneous sys-
tems (Figs. 1i and 2b).

Figure 3c, d contrast the breathing radius phase portraits between
homogeneous and heterogeneous systems of different N. We observe
that the homogeneous systems experience a decay of periodicity evi-
denced by the gradual collapse of limit cycle orbits in its phase por-
traits as a function of N, consistent with trends in Fig. 2b. In contrast,
the heterogeneous systems’ limit cycles are robust to variations in N,
retaining their closed-loop phase-space orbits. To rigorously quantify
the effect that DLs have on collective periodicity, we analysed the
recurrence structure of the dynamical trajectories across system sizes
(see “Methods”)55. As sketched in Fig. 3e, recurrence analyses capture
the dynamical properties of system behaviours by measuring the time
the system takes to return to a given state’s neighbourhood. The set of
all such time intervals is compiled into a recurrence histogram (Fig. 3f)
whose recurrence entropy can be used to quantify the complexity of
dynamical trajectories56, with perfect periodicity corresponding to
zero entropy.

The linear entropy increase for homogeneous systems as a func-
tion of N (Fig. 3g) corresponds to the increasing disorder in the sys-
tem’s recurrences that is consistent with the progressive loss of
periodicity observed in Figs. 2c and 3c. Also in accordance with earlier
qualitative trends in Figs. 2f and 3d, the recurrence entropy of the DL
system is locally invariant to changes in N, thereby providing quanti-
tative evidence of the robustness of the periodic beating induced via
symmetry-breaking. While we find that the system’s invariance to
particle number holds up toN = 11, we leave the study of larger particle
systems for future work (Supplementary Figs. 10, 11).

Self-oscillating microgenerators
Through a simple modification to the particle design, we are able to
harness the robust chemomechanical beating to generate an oscilla-
tory electric signal. As illustrated in Fig. 4a, b, we fabricated particles
with a Pt pattern closely lined up with (though spatially separate from)
an additional metal patch of either Au or Ru (see Methods). With the
bimetallic design, the previously auto-redox catalytic decomposition
of H2O2 on Pt is in part separated into an oxidation half-reaction on Pt
and a reduction half-reaction on Ru (Au)30,31,57:

Pt : H2O2 ! O2 +2H
+ + 2e�

Ru ðAuÞ : H2O2 + 2H
+ + 2e� ! 2H2O

Overall : 2H2O2 ! 2H2O+O2:

ð3Þ

Fig. 1 | Emergence of chemomechanical microparticle self-oscillation.
a Schematic of a self-limited system of a single particle resting still at the air–liquid
interface of aH2O2 drop. The particle is composed of a catalytic patch of Pt (yellow)
underneath a polymeric disc (blue). The O2 formation slows down asymptotically
over time as the gas bubble restricts the available catalytic surface area. b A
2-particle system, in contrast, exhibits an emergent and self-sustained beating
behaviour as the bubble merger restores the previously hindered reactivity, thus
disrupting the equilibrium state. c, dMicrograph sequence (c) and tracked particle
coordinates (d) of a 1-particle system that remains still for an extended period of
time. e, fMicrograph sequence (e) and tracked coordinates (f) of a 2-particle system
with emergent beating. The breathing radius, r(t), is the distance from the col-
lective's centroid to each particle, averaged over all particles. g The long-term
breathing radius trajectory of the same system as in e and f demonstrates the

robustness of the beating behaviour. The shaded portion is magnified in the right
panel, where themechanisticmodel simulations (black, Supplementary Note 1) are
shown to match the experimental curve (blue). h The phase portraits of 4 inde-
pendent 2-particle experiments demonstrate reproducible limit cycles with closed-
loop orbits, confirming the periodicity of collective beating. Note that to calculate
the phase portraits the system's bubble-driven discontinuities were processed
through a standard finite-impulse response filter (seeMethods). All phase portraits
share the same axes. i The recurrence histograms of the same 4 experiments all
display a narrow peak centred at a period of 3.2 s, consistent with visual evidence in
e. All histograms share the sameaxes. jThebeating frequencycanbe tunedwith the
concentration of H2O2. The dependence predicted by the mechanistic simulations,
on the basis of a Langmuir–Hinshelwood kinetics (black curve), matches the
experimental measurements (blue markers). Scale bars, 500μm.
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Fig. 2 | Observations of emergent order via symmetry-breaking. a Schematic of interarrival times in a system of beating microparticles, defined as the time that
transpires between two consecutive bubble collapses. The interarrival time distribution should be tight (i.e., a single peak) in a perfectly periodic system, and broad in an
aperiodic system.b (top tobottom) Interarrival timedistributions andopticalmicrographs for homogeneous systemsofN = 2, 3, 5, and8 identical particles. AsN increases,
the collective systemperiodicity gradually decays and transitions to an exponential interarrival distribution atN = 8 (bottom, black curve). Scale bar, 500μm. c Indeed,we
observe that the breathing radius of a homogeneous N = 8 system is not periodic. d Asymmetry-induced order across N predicted by Rattling Theory. A quantification of
collective disorder, the system's RattlingR is predicted to be lower (i.e. more orderly) if the relative burst intensity of one particle is increased beyond or decreased below
1x, which signifies homogeneity. This is experimentally realised bymodulating the Pt patch size on a “designated leader” (DL) particle relative to the others. The curves are
offset to make all R =0 at 1x intensity to highlight the effect of system heterogeneity on Rattling. See Supplementary Note 2 for a detailed discussion of the analytical
model. e Same as (b), but for heterogeneous systems of equal particle numbers, where the DL broke the permutation symmetry. In contrast to the homogeneous systems
(b), they remain robustly periodic across N. It is important to recognise that the polymeric disc size of a DL is unchanged. Scale bar, 500 μm. f, Breathing radius for an
8-particle DL system (i.e., N = 7 + 1DL), which reliably beats periodically. The period of 14.2s extracted from r(t) coincides with the most probable interarrival time in
e (bottom).
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Consequently, a potential difference is established at the two
electrodes that essentially transforms the particle into an on-board
fuel cell. These same principles have been previously used to gen-
erate voltages in nanomotors, where bimetallic rods and nano-
particles are propelled electrokinetically by the accompanying
electric field58–60. A micrograph of our fabricated prototype is dis-
played in Fig. 4b. Note that the metallic leads extending outwards
were added to facilitate electrical characterization of the devices and
are not necessary to their operation. The leads were passivated and
hence do not participate in any electrochemical reactions. The Pt-Ru
and Pt-Au fuel cell devices measured open-circuit voltages of 144.9
mV ± 2.4 and 21.4 mV ± 3.5, respectively, in a 25.8 wt% H2O2 solution
with 0.075 M KNO3 added for conductivity (see “Methods” and
Supplementary Fig. 13). These values are in line with prior mechan-
istic studies30,31 (Supplementary Note 4). Under the same conditions,
the Pt–Ru fuel cell delivers a short-circuit current density of 1.71 mA/
cm2 ± 0.38 and a current of 56.7 nA ± 12.4. As a benchmark, a sig-
nificantly larger 1.5 × 6 cm thermo-mechano-electrical self-oscillator
reported recently recorded a peak current of ~47 nA61. The depen-
dence of the current density on H2O2 concentration is summarised in
Fig. 4c (also Supplementary Fig. 14).

As before, the system’s collective beating drives the synchro-
nised formation and collapse of bubbles on each particle. However,
unlike previous experiments, here the instantaneous size of the
bubble also modulates the electrical conductance from one elec-
trode to the other (Fig. 4a, N = 2 for demonstration). This effect, in
conjunction with the fuel cell’s voltage, enables the on-board gen-
eration of oscillatory currents that are in phase with the mechanical

beating (Supplementary Fig. 16). In a Pt-Ru device, we observe that
the ON/OFF ratio betweenmaximal andminimal currents can exceed
106, corresponding to when the bubble is absent and at its threshold
size. Importantly, the same chemical energy harnessed from the
environment is used to simultaneously drive the mechanical oscilla-
tion, generate the electrical voltage, and modulate the electrical
conductance. Multifunctionality of this kind is emblematic of emer-
ging paradigms such as embodied energy62, and is crucial to the
development of efficient microsystems.

Figure 4d, e exemplifies the beating system’s capability to cycli-
cally drive a microrobotic load with its self-generated oscillatory
electrical current. In this proof-of-concept demonstration, we wired
the Ru electrode of a fuel cell particle to a state-of-the-art Pt–Ti elec-
trochemical microactuator (see Fig. 4d and “Methods”), originally
invented for a tethered sub-100μm walker63. In our experimental
configuration, charged species from the electrolyte is desorbed from
thePt surfaceof thebimorphmicroactuator as current passes through,
causing it to deswell and its curvature/length to change. Evident in
Fig. 4e, the periodic actuation of the bimorph (red curve, representa-
tive snapshots in Fig. 4d, also Supplementary Movie 5) is driven by the
periodic spikes in the current signal (blue curve), which in turn is
modulated by the chemomechanical beating of two particles. Because
the outer radius of the Pt electrode (Fig. 4b) exceeds the 125μmpatch
radius of a standard particle, the system is stabilised by the added
heterogeneity, which also explains the observed sub-0.03 Hz beating
frequency. In contrast, the control experiments in Fig. 4e show the
actuator idling in the absence of a second particle and hence any
mechanical beating. By harnessing the emergent power generation of

Fig. 3 | Designated leaders induce periodic limit cycles. a, b Features of DL
beating explained with schematic (a) and micrograph sequence (b) of a 2-particle
heterogeneous system. The leader particle is able to grow a large bubble promptly
and subsume the smaller bubbles of neighbouring particles across several rounds
of bubble coalescence. Scale bars, 1 mm. c, d, Phase portraits of homogeneous (c)
and heterogeneous (d) systems of N = 2, 3, 6, and 8. Only the latter is able to
maintain the closed-loop orbits at high particle counts. e Schematic of recurrence
time calculation. The recurrence time is the time it takes to return from a given

system configuration to the neighbourhood of said configuration (see “Methods”).
f Recurrence histogram compiling all of the recurrence times observed across
experiments of the 2-particle heterogeneous system (N = 1 + 1DL). g Recurrence
entropy as a function of N for both homogeneous (yellow) and heterogeneous/DL
(blue) systems. Low recurrence entropy is a quantitative indicator of periodic
behaviour. The homogeneous system's recurrence entropy trends upward, sug-
gesting a decay in periodicity, while the DL system's entropy remains low in
accordance with its observed periodicity even at high N.
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an ensemble of microparticles, we have demonstrated the design and
modular interoperability of key microrobotic components—energy
sources and locomotive elements—based on the physics of self-
organization.

Discussion
Through the discovery of physical mechanisms for asymmetry-
induced order, we constructed self-oscillating electrical generators
capable of powering on-board microrobotic components from the
interactions of simplemicroparticles. Our results stand in contrast to
more traditional microrobotic approaches focusing on the design of
intricate electromechanical assemblies to produce alternating elec-
trical currents14. By relying on our system’s self-organised beha-
viours, we circumvented the design of complex contraptions to
harvest and transduce chemical energy into periodic electrical and
mechanical work—a crucial step towards fully-autonomous
microrobots62,64. The use of on-board electrical currents will enable
the integration of sensors and computational elements to enrich
physical microparticle interactions65, forming the basis for future
collectives wherein the long-envisioned potential of complex inter-
particle communications can be implemented40. We plan on
extending our approach into studying larger collections of micro-
particles in search of general principles for the top-down design of
active matter systems, where an understanding of system symme-
tries and environmental forcing may enhance their task-capability.
Unifying perspectives from their respective fields, our work suggests
that future microrobots and active matter systems may become
more robust and task-capable when we design them to exploit the
physics of the environments they inhabit.

Methods
Fabrication and liftoff of microparticles
The fabrication process is summarised in Supplementary Fig. 4. SU-8
2010 photoresist was spun on a Si wafer at 3000 rpm for 1min. It was
baked at 65 °C for 1 min and 95 °C for 2 min. The SU-8 discs were
definedby exposurewith aKarl SüssMA6MaskAligner at a dose of 140
mJ (365 nm). The wafer was baked post-exposure at 65 °C and 95 °C,
respectively, for 1 and 2.5 min. The resist was developed in SU-8
developer for 2.5 min, soaked in isopropanol, and blow dried. The
wafer was optionally hard baked at 115 to 180 °C for 10 min to 2 h.

LOR 3A photoresist was spun onto the sample at 1000 rpm for
1 min. This was optionally followed by a second spinning step at 2000
rpm for 30 s to ensure that the coating was uniform at the periphery.
The sample was baked at 180 °C for 4 min. Shipley S1818 photoresist
was spun at 2000 rpm for 1 min and subsequently heated at 115 °C for
1min. The LOR and Shipley parameters were optimised to ensure a full
coverage over the 10-μm-thick SU-8 discs. The sample was aligned and
exposed at 140 mJ (405 nm). It was then developed in AZ 726 MIF for
1.5 min. The sample was washed with running DI water and blow dried.

The Pt metal patches were deposited with a Denton e-Beam Eva-
porator. A typical patch consists of 5 nm of Cr or Ti adhesion layer and
50 nm of Pt. The photoresists were stripped in Remover PG.

The fabricatedmicroparticleswere liftedoff thewafer substrate in
45 °C 1M KOH solution, which etched away Si (Supplementary Fig. 4b).
The process typically took 30 to 50 min. The microparticles were
collected by a transfer pipette and then washed repeatedly with DI
water until the solution’s pH was neutral. Alternatively, the micro-
particles were first coated with PMMA A4 (polymethyl methacrylate)
before being lifted off in 90 °C 1M KOH solution (Supplementary

Fig. 4 | Self-organised oscillation powers a microrobotic arm. a Schematics of
the generation of an oscillatory electrical current from chemomechanical beating.
The pair of metals (Pt–Ru or Pt–Au) patterned on a polymer base constitute the
electrodes of a H2O2 fuel cell, which serves as an on-board voltage source. The
periodic bubble growth and collapse in a beating system separately modulates the
electrical resistance between the electrodes, leading to an oscillatory current.
bOpticalmicrograph of a typical Pt-Ru fuel cell particle. The entire surface, less the
electrode area, is passivated with a thin layer of insulating SU-8 polymer (shaded).
The metallic leads on the left are not necessary for device operation and are

included to facilitate measurement. Scale bar, 100 μm. c Short-circuit current
density as a function of H2O2 concentration for a Pt-Ru device.d, eCyclicmotion of
a microrobotic actuator driven by the oscillatory current. The schematics and
micrographs in d show the extended and contracted states of the actuator
respectively under theON andOFF current conditions, asmodulated by the bubble
size. The currentmeasurement over time and the actuator length change (e) closely
match, confirming that the cyclic actuation is driven by the oscillatory current,
which itself is emergent from the particle beating. Scale bar, 2μm.
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Fig. 4c). Themicroparticle arrayon the PMMAsheetwaspickedupbya
clean piece of wafer. The PMMA was carefully dissolved away with
acetone and the particles were washed by and stored in DI water.

Experimental characterization of beating behaviour
In a typical experiment, 1 mL of H2O2 solution (10.7% unless otherwise
noted, VWR International, LLC, Radnor, PA) is dispensed gently onto a
polystyrene Petri dish (VWR International, LLC, Radnor, PA). Two
methods were used to transfer the micro-oscillators from their vial to
the H2O2 droplet. In the “wet” method, they could be collected with a
narrow-tipped transfer pipette alongwith a small amount ofwater, and
subsequently transferred onto the droplet. The introduction of a
minor amount of diluent as well as the occasional need to flip over a
particle can be avoided with an alternative “dry” process. First, a par-
ticle was wet transferred onto a glass slide with a transfer pipette.
Excess water was carefully wiped off while the particle was not com-
pletely dried. A drop of H2O2 solution was then added. This step
allowed the operator to check the orientation of the particle on the
glass slide prior to its transfer to the droplet. A quartz NMR sample
tubewas used to directly pick up the particle dry, a process assisted by
surface tension. Note that the other end of the tube was, of course,
capped. Lastly, the dry particle with the correct orientation was gently
placed atop the 1 mL H2O2 droplet under the camera.

Thebeatingbehaviourwas recordedas30 fps videoswith aCanon
Rebel T6i camera (Canon U.S.A., Inc., Huntington, NY). The optical
system comprised a magnification lens (MVL12X20L), a coaxially
focusable zoom lens (MVL12X3Z), and an extension tube (MVL12X3Z),
all purchased from Thorlabs, Inc., Newton, NJ. The setup followed that
described previously in ref. 66. The illumination source was a MI-150
Fiber Optic Illuminator from Edmund Optics Inc., Barrington, NJ.

Phase and recurrence analyses of particle beating
The recorded videos of the beating systems were processed with the
Image Processing Toolbox of MATLAB (MathWorks, Inc., Natick, MA).
The particle centreswere identified fromeach frameof the videoswith
the standard imfindcircles function, a circle-finding algorithmbased
on circular Hough transform67. Given a collection of particle trajec-
tories from an experimental trial, the main observable from which to
construct the phase portraits shown in Fig. 3 was the breathing radius
r(t) as defined in Eq. (2). The phase portraits were then constructed by
plotting the coordinates of vðtÞ= ½ _rðtÞ, rðtÞ� after applying a low-pass
filter, and the time-derivative of the breathing radius was estimated via
finite differencing.

Equipped with the dynamical observables defined above, the
recurrence properties of a system can be analysed by finding how
often and how quickly the system returns to a neighbourhood of v(t).
Hence, for a given experiment comprised of K samples we collect data
at times ti = iΔt,∀i∈ {0,⋯ ,K − 1} with sampling rate Δt. While in
principle this is all one needs in order to quantify recurrence
statistics55, an additional step must be taken in order make the calcu-
lation robust. We augmented our v(ti) vectors by "embedding” the
time-series according to an integer parameter m56. This resulted in a
modified set of coordinates, vmðtiÞ= ½vðtiÞ, � � � , vðti +m�1Þ�T , from which
to robustly calculate our recurrence statistics. Finally, to derive the
recurrence properties of a system from an experimental dataset we
calculated its recurrence set

Rs = f∣ti � tj ∣ : ∣∣vmðtiÞ � vmðtjÞ∣∣< ϵ,8i, jg, ð4Þ

over all valid indices. Note that m and ϵ are a fixed choice of positive
non-zero embedding dimension and neighbourhood size parameters,
respectively.With this set nowdefined,we couldcalculate a recurrence
histogram from the set Rs using any standard scientific computing
package, as in Fig. 3. Additionally, we note that the histogram can be
normalised into a pseudo-probability distribution that expresses the

likelihood p(T) that a systemexhibits a recurrence after T seconds. The
dominant frequencies plotted in Figs. 1, 3 and Supplementary Fig. 6
were computed from the T of maximum likelihood from the
corresponding recurrence analyses.

As we are interested in characterizing the onset of periodicity
across collectives of beating particles, we must construct a measure
capable of differentiating the diversity of behaviours we observed. For
this purpose, wemade use of the entropy of the recurrence probability
distributions. As an example, consider a system with a single perfectly
oscillatory mode. Then, its recurrence distribution would be a delta
function corresponding to its period of oscillation, and thus have zero
entropy. If one were to introduce noise or uncertainty into that single
oscillatorymode, thenprobabilitymasswould spreadaround the delta
peak and generate non-zero entropy. Likewise, if the system were to
have multi-modal (but deterministic) oscillation, probability mass is
now shared between the peaks of the distribution, leading to non-zero
entropy.

As thebehaviour of a systembecomes increasingly complex, it has
been shown that the recurrence distribution entropy is a useful metric
to quantify this shift that has known connections to both Kolmogorov-
Sinai and Rényi entropies68, as well as the correlation sum in chaos
theory69. However, in order to compare the recurrence entropies of
systems with differentmaginitude- and timescales, we first normalised
our data in two ways. First, we applied min-max normalization to the
coordinates of p(T), which allows one to use the same ϵ in the calcu-
lation of the recurrence set. Second, we normalised the elements of Rs

according to its maximum (while keeping the number of histogram
bins constant across systems) in order to study the structure of system
recurrences without confounding variables. The result of this process
can be seen in Fig. 3.

Fuel cell fabrication
LOR 20B photoresist was spun onto a Schott Borofloat 33 wafer
(UniversityWafer, Inc., Boston,MA) at 3000 rpm for 1min and baked at
180 °C for 4 min. Shipley S1805 photoresist was spun at 3000 rpm for
1 min and baked at 115 °C for 1 min. The sample was exposed at 82.5 mJ
(405 nm). It was then developed in Microposit MF-319 developer for
65 s. The sample was washed with running DI water and blow dried. A
Denton e-Beam Evaporator was used to deposit 10 nm of Ti and 50 to
100 nm of Pt. The photoresists were stripped in Remover PG. For the
deposition of a second metal, be it Au or Ru, LOR and Shipley resists
were spun, baked, exposed, and developed the same as described
above. 10 nm of Ti and 100 nm of Au was deposited with an electron
beam evaporator. Alternatively, 50 nm of Ru was deposited as the
deposition was slow. The photoresists were stripped in Remover PG.

The SU-8, LOR, and Shipley resists were all purchased from
Kayaku Advanced Materials, Inc., Westborough, MA, in addition to the
SU-8 developer, MF-319 developer, Remover PG, and PMMA. The AZ
726 MIF was purchased from MicroChemicals GmbH, Ulm, Germany.

Finally, a passivation layer of SU-8was defined on top of themetal
electrodes. For the convenience of the electrical measurements that
followed, the SU-8were patterned as either 5mm-by-5mmor 11mm-by-
11mm square islands with the active electrode area at the centre
exposed. SU-8 2002 was used but the precise thickness was
inconsequential.

Fabrication and characterization of microactuators
The Pt–Ti bimorph microactuators were fabricated on a Cu sacrificial
layer atUniversity of Pennsylvania’smicrofabrication facility according
to the procedures previously reported63. The actuators were lifted off
overnight in a 4 mg/mL ammonium sulfate solution, which etched
away the Cu substrate. The actuators were subsequently transferred to
a phosphate-buffered saline (PBS) solution.

In Fig. 4 of the main text, the bimorph microactuators were
cyclically driven by the oscillatory electrical current signal generated
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by the oscillatory beating between a Pt–Ru fuel cell device and a Pt-
decorated beating particle. Each microactuator was picked up by a
parylene-coated Pt-Ir monopolar electrode (PI2003X.XA3, 0.1MΩ,
Microprobes for Life Science, Gaithersburg, MD) in PBS. The parylene
coating prevented unnecessary current leakage into the electrolyte.
ThePt-Ir electrode connected to theRuelectrodeof the fuel cell device
via a probe station (Advanced Research Systems, Macungie, PA) and a
W probe (The Micromanipulator Company, Carson City, NV). The
probe station read out the real-time current with a custom MATLAB
code. The Pt electrode of the fuel cell, via aW probe, was connected to
a Pt wire partially immersed in the PBS solution.

A 30% H2O2 solution and a 0.5M KNO3 solution were mixed at a
volumetric ratio of 85:15. The salt was included to enhance the elec-
trolyte’s electrical conductivity. For the self-oscillation to take place,
8.5 μL of the prepared mixture was dropped atop a fuel cell device on
the wafer. A beating particle was subsequently transferred to the same
solution using the transfer method described earlier. The actuation
was recorded with the same optical setup described above mounted
over the probe station.

Actuation analysis of microactuators
The extent of actuation as a function of time was extracted from the
recorded videos described in the previous section. A standard canny
edge detection algorithmwith pixelmagnitude thresholdswas applied
via OpenCV70. A boundary representing the outline of the actuator was
extracted, which could then be used to define a coordinate system
aligned and centred along the long edge of the actuator over the
duration of the video—a crucial step for reducing measurement drift.
From this coordinate system, the length of the actuator was then
simply defined according to the nearest actuator boundary pixels
along the vertical axis. Finally, in order to mitigate the effect of fluc-
tuations andmechanical vibrations, a standard low-pass finite-impulse
response (FIR) interpolation scheme was applied to the actuator
length signal over time71.

Data availability
The data supporting the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The code supporting the findings of this study is available from the
corresponding author upon reasonable request.
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Supplementary Notes

1 Mechanistic Model and Simulation of Particle Beating

As the microparticles beat at the curved liquid-air interface of a drop of aqueous H2O2 solution, we start by solving the Laplace
equation of capillarity [1, 2]. We solved the following system of ordinary differential equations (ODEs) with MATLAB’s ode45
Runge-Kutta solver (MathWorks, Inc., Natick, MA):

dρ

ds
= cos θ (1)

dz

ds
= sin θ (2)

dθ

ds
=


β, s = 0

2β + γcz −
sin θ

ρ
, s > 0

(3)

dV

ds
= πρ2 sin θ (4)

ρ(0) = z(0) = θ(0) = V (0) = 0 (5)

where β is the curvature at the apex s = 0 and V is the volume. γc = g(ρl − ρa)/γ denotes the capillary constant, where
γ is the interfacial tension, ρl density of the liquid phase, and ρa that of air. θ, r, z, and s are defined in Supplementary
Fig. 1. For each value of β, a solution to the initial value problem can be obtained which describes the profile of a Laplacian
axisymmetric interface. A unique β can be identified such that V = Vdrop and θ = θc at the three-phase contact line. In our
experimental system, the contact angle θc = 87.4◦ for the peroxide-polystyrene interface in air. Supplementary Fig. 1 below
presents the interface profile for a series of Vdrop values. β is solved to be 17.56m−1 for Vdrop = 1mL.

Supplementary Figure 1: Coordinate system of the H2O2 drop and the solved interface profiles for a series of drop volumes
Vdrop.

As discussed in the main text, the microparticles are driven outward by the collapse of a shared bubble and come together
via a global and a local restorational force. As the SU-8 polymer is barely denser than the peroxide solution, the buoyancy
from a small gas bubble underneath the disc is able to overcome the particle’s weight and create a net force upward. As the
microparticle is constrained to the liquid-air interface, it climbs the global drop profile defined by the above solution of the
Laplace equation. One can formulate the energy as the product of the particle’s vertical displacement and its weight after the
subtraction of the Archimedes force. Thus, the lateral component of this global restorational force is given by:

Fg = [m− ρlΛbVb(t)] g
dz

dρ
(6)

where Vb(t) is the instantaneous bubble volume. Only the mass of the particle, m, is considered as that of the bubble is
insignificant. The dimensionless factor Λb is the volume fraction of the gas bubble lying below the undisturbed interface,
as it is the displaced liquid in this region that gives rise to buoyancy. Note that we only included Λb for the generality of
Supplementary Equation (6). We use a Λb of unity in the simulations hereafter in accordance with experimental observations.
Given the drop profile, the force always points towards the apex.

To quantify the “Cheerios effect”, i.e. the inter-particle capillary attraction as a result of the local interfacial distortion,
we adopt the Nicolson approximation [3] which assumes that (i) the horizontal force from capillary pressure is insignificant
compared to that from buoyancy, and (ii) the small interfacial distortions may be superposed [4]. Prior results show that
the Nicolson approximation is justified for small Bond numbers B = R2/L2

c , or equivalently if the floating object’s radius
R ≪ Lc =

√
γ/ρlg, the capillary length. Indeed, the Lc of our experimental system is approximately 2.7mm, far exceeding

the spatial scale of the beating physics. The surface height in the neighbourhood of a floating bubble follows:

h(l) = −BΣRK0(l/Lc) (7)

2



where l is the lateral distance from the bubble centre, Kn the modified Bessel function of the second kind of order n, and
Σ the buoyancy-corrected dimensionless weight defined by 2πγRBΣ = [m− ρlΛbVb(t)] g. Supplementary Equation (7) is a
simplified asymptotic result true for l ≪ Lc. The lateral capillary force experienced by a bubble of volume V ′

b at a distance l
away is therefore:

Fc = [m− ρlΛbV
′
b] gB

3/2ΣK1(l/Lc) (8)

Needless to say, the capillary attraction force points towards the centre of the other particle. The K1(l/Lc) dependence is in
agreement with the results derived from an energy approach [5]. Readers are directed to [6] for the treatment of scenarios
with more than 2 particles.

We next consider the hydrodynamic interactions. In the regime of low Reynolds number and low capillary number such as
our system, the drag force for an object at the liquid-air interface is expressed as:

Fd = −6πµΛdRb(t)v(t) (9)

where µ is the liquid’s dynamic viscosity, Rb the bubble radius, and v the instantaneous velocity. The drag coefficient Λd is a
scaling factor depending on the object’s geometry, its depth of immersion, the contact angle, surface tension, and the densities
of the object and the liquid [6]. As Λd is difficult to estimate analytically, we assume it is a constant for simplicity and leave it
as one of the two free parameters we estimate from experiments, a practice consistent with published models of microparticle
motion along a curved interface [2].

An important additional consideration is the significantly increased drag when multiple particles approach one another,
caused by the increased resistance to removing the liquid between them [7]. We note this inter-particle hydrodynamic
interaction particularly because of the noticeable deceleration in our beating system when the edge-to-edge distance between
particles were less than 2Rp (see, for example, Fig. 1g between 68 and 69s). The approach velocity was virtually 0 right
before contact, suggesting a drag significantly larger than that given by Supplementary Equation (9). Indeed, some previous
studies predicted two floating microparticles to accelerate towards each other all the way until they collide if the Stokes’ drag
expression was not corrected for inter-particle interactions [4].

The most numerically convenient means of accounting for said interactions is to adopt the concept of hydrodynamic
mobility [8], as with a number of previous works [6, 9]. This correction factor as a function of the inter-particle spacing, l, is
given by:

G(λ) = 1− 1

3
λ−1 + λ−3 − 15

4
λ−4 − 4.46

1000
(λ− 1.7)

−2.867
(10)

where λ = l/max[Rb(t), Rp]. G, which is typically multiplied to the terminal velocity, approaches 1 for large separations
λ −→ ∞ and 0 for λ = 2 when the objects contact. Equivalently, we divided the drag expression in Supplementary Equation (9)
with G in our numerical simulations.

The force expressions in Supplementary Equations (6), (8), (9), and (10) allow us to simulate the motion of each beating
particle i with Newton’s second law:

dvi

dt
=

1

meff
(Fg,i + Fc,i + Fd,i) (11)

We followed [2] in introducing a scaling factor for the effective mass (meff = Λmm) to account for the added mass of liquid
experienced during particle acceleration. The two fitted parameters of the model, Λm = 11.25 and Λd = 0.35, were kept
constant across simulations of different H2O2 concentrations. The model outlined above was solved numerically again with
MATLAB’s ode45 Runge-Kutta solver. As all three forces are also dependent on the instantaneous bubble volume (equivalently,
the radius), we zoom in to the catalytic surface and study the reaction kinetics as the final piece of the puzzle.

The volume of the O2 bubble as a function of time, Vb(t), is dictated by the rate of O2 generation, which in turn is dependent
on the free platinum patch surface area APt,free, as well as the peroxide concentration [H2O2]. For a given experiment, we
assume that the peroxide is in excess and [H2O2] is a constant throughout, based on the absence of a shift in the beating
frequency (Supplementary Fig. 6). A well-studied catalytic reaction, the decomposition kinetics of H2O2 on noble metal and
oxide surfaces can be described by the classic Langmuir-Hinshelwood mechanism [10, 11]:

dVb

dt
=

kAPt,free(Vb)[H2O2]

1 +KH[H2O2]
(12)

where k is a constant encompassing the reaction rate constant, the specific volume of O2, and the areal density of the surface
sites. The kinetic equation represents that the rate is first order with respect to the concentration of bound surface sites,
which are saturated at increasing peroxide concentration modulated by the binding constant KH. In the single particle
scenario, APt,free decreases over time as the bubble underneath the particle starts to limit the accessible catalytic surface
area. This leads to a reduced dVb/dt and therefore a self-limiting reaction. Inspection of the 2-particle beating videos,
on the other hand, shows a near-linear increase of the bubble volume up until the moment of merger. This observation
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suggests that the bubbles in the beating system do not grow beyond the critical Vb which marks the onset of catalytic surface
blockage, and that APt,free ≈ APt. The resultant time-independent reaction rates at different H2O2 molarities were fitted to
the Langmuir-Hinshelwood kinetics, outputting k = 3.025× 10−10m4s−1mol−1 and KH = 0.677L/mol. This parameterised
kinetics was used in our quantitative model to account for the effects of H2O2 concentration and Pt surface area (e.g. in Fig.
1j of the main text).

All parameters used in the mechanistic model are listed in Supplementary Table 1.

Supplementary Table 1: Parameters used in the mechanistic model.

Symbol Parameter Conventional Unit
β Curvature at the apex of the drop [m−1]
γ Interfacial tension of the liquid-air interface [N/m]
γc Capillary constant of the liquid drop [m−2]
θ Angle of the liquid-air interface relative to the lateral dimension [rad]
θc Three phase contact angle [rad]
λ Dimensionless distance between two floating objects used in hydrodynamic mobility [-]
Λb Volume fraction of gas bubble lying below the undisturbed interface [-]
Λd Effective drag scaling factor [-]
Λm Effective mass scaling factor [-]
µ Dynamic viscosity of the liquid [N·s·m−2]
ρ Lateral coordinate relative to the drop’s apex [m]
ρa Density of air [kg/m3]
ρl Density of liquid [kg/m3]
Σ Buoyancy-corrected dimensionless weight [-]
APt Surface area of the Pt patch [m2]

APt,free Accessible area of the Pt patch [m2]
B Bond number [-]
Fc Lateral component of the local capillary force between floating objects [N]
Fd Lateral component of the drag force [N]
Fg Lateral component of the global buoyancy-corrected gravitational force towards the apex [N]
g Gravitational acceleration [m/s2]
G Hydrodynamic mobility [-]

[H2O2] Concentration of hydrogen peroxide [mol/L]
k Rate constant of peroxide decomposition per unit area [m4·s−1·mol−1]
KH Surface binding constant of peroxide decomposition [L/mol]
Kn Modified Bessel function of the second kind of order n [-]
l Lateral coordinate from the centre of a floating object [m]
Lc Capillary length [m]
m Mass of a microparticle [kg]
meff Effective mass of a microparticle [kg]
R Radius of a floating object [m]
Rb Instantaneous radius of a bubble [m]
s Coordinate along the liquid-air interface relative to the drop’s apex [m]
t Time [s]
v Lateral component of a microparticle’s velocity [m/s]
V Integral volume used in calculating the drop profile [m3]

Vb, V
′
b Volume of a bubble [m3]

Vdrop Volume of the drop [m3]
z Vertical coordinate relative to the drop’s apex [m]
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2 Thermodynamics of Particle Beating

Asymmetry-induced order is a process by which explicit symmetry-breaking (spontaneous or otherwise) leads to the emergence
of ordered states in a system [12–15]. Hence, asymmetry-induced order requires both a symmetry whose breaking can be
observed, and a clear notion of “degree of order.” Which symmetry to break is inherently a system-dependent question, and
as such there are no general means of choosing between symmetry groups to achieve a desired outcome. However, the so-called
degree of order of a system is a challenging property to formally specify in general. For one, what is meant by order is often
ill-defined or underspecified. Secondly, even when provided with a means to metricize order, such metrics are often analytically
and computationally intractable because they require global knowledge of system states—as is the case for calculating entropy.
This is further complicated by the fact that, far from equilibrium, entropy is not sufficient to establish the robustness, stability,
or persistence of system configurations (all of which are attributes often ascribed to “orderly” states) [16]. To this end,
physicists have made use of order parameters to establish more narrowly-construed notions of order on a case-by-case basis for
particular systems [17, 18].

Recent work in nonequilibrium thermodynamics has made strides towards describing the emergence of order more generally
in broader classes of complex systems. Rattling theory is a novel thermodynamic theory describing the emergence of order
and self-organization in “messy” nonequilibrium dynamical systems [19, 20]. The success of rattling theory depends crucially
on the definition of the class of systems it considers to be messy. The rattling ansatz sees the behavior of complex systems as
stochastic diffusion processes taking place in high-dimensional configuration spaces in the presence of energy influxes driving
them out of equilibrium. Any system whose behavior can be described by such configuration-space diffusion falls under the
class of messy systems described by rattling theory. Modelling the behavior of systems as diffusion processes is what enables an
analytical determination of nonequilibrium steady-state density, and, as a consequence, an understanding of self-organization.
Empirically, this approach has been shown to predict the long-term behavior of a wide variety of systems, from canonical
chaotic systems [21] to swarms of robots [19], and is expected to apply across diverse active matter systems as well [22, 23].

At the heart of the theory lies a precise, local, and computable measure of order, rattling, from which the theory derives its
name. Rattling measures the way in which system configurations respond to external force fluctuations: Rapid, uncorrelated
configurational changes produce high rattling values, and slow, correlated changes produce low rattling values. When a
system’s response to local force fluctuations is random (i.e., has Gaussian statistics), rattling is exactly the entropy of its
configurational velocities. As a quantity, the rattling R(q) of a system at configuration q is

R(q) =
1

2
log det⟨q̇i(t), q̇j(t)⟩q(0)=q (13)

where ⟨·, ·⟩ is the covariance tensor of the system’s configurational velocities (i.e., two-point correlation function) averaged
over an ensemble of dynamical trajectories initialized at q. Using this definition, we can state the central prediction of rattling
theory, known as the “low-rattling selection principle.” The principle expresses a relationship between the magnitude of
system-level fluctuations measured at a particular configuration (i.e., rattling R(q)), and said configuration’s prevalence in the
system’s nonequilibrium steady-state density. In particular, this relationship is of Boltzmann-like form:

p(q) ∝ e−γR(q) (14)

where γ is a constant of order 1. This relationship shows that configurations with remarkably low entropy dynamical responses
(i.e., low rattling) are exponentially preferred in the system’s steady-state. Thus, rattling and its associated selection principle
are able to sufficiently establish the robustness, stability, and persistence of the configurations of complex systems.

In summary, rattling captures the ways in which correlations among disorderly degrees of freedom give rise to system-level
fluctuations of different magnitudes. Then, the low-rattling selection principle states that such system-level fluctuations bias
the nonequilibrium steady-state of a complex system towards configurations in which the system experiences remarkably
low magnitude fluctuations. Furthermore, this spontaneous selection of low rattling configurations necessarily requires that
strong correlations between degrees of freedom arise, and thus for orderly behaviors to emerge. Interested readers looking
for a complete treatment of this material, as well as theoretical derivations and experimental validation, are referred to [19].
Equipped with a precise way to quantify order in a broad class of complex systems, we may now develop a system-specific
understanding of the ways in which symmetry-breaking affects the rattling of our system of beating particles in hopes of
finding strategies to stabilize periodic system beating for N > 2.

In order to elucidate the role that symmetry-breaking may play in the self-organized states of our system of active
microparticles, we must now consider specific system symmetries and their relationship to the magnitude of system-level
fluctuations. While our system is not invariant to the action of any obvious continuous symmetry groups, it is permutation-
symmetric [24]. This is to say that our collection of microparticles are all dynamically identical (up to fabrication tolerances).
Hence, one promising avenue to investigate is the different ways in which permutation-symmetry breaking may lead to order
in our system. Based on results from our mechanistic modelling of particle beating, we know that there are two ways in which
the dynamics of individual microparticles can be made distinct from one another. First, we know that changing the volumetric
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shape of particles will lead to different local hydrodrynamic drag properties. Second, we know that changing the buoyancy of
particles also produces local changes to individual microparticle dynamics through its effect on capillary forces. However,
changing the shape of our microparticles requires major changes to their fabrication, as well as nontrivial modifications to the
mechanistic model. In contrast, we can easily modify a particle’s buoyancy by modulating the volume of the bubble forming
underneath the particle, which we can in turn control through the size of their Pt patch.

To explore the role of permutation-symmetry breaking on our system, we constructed a simple model that we can work with
analytically from the perspective of rattling theory. In line with the rattling ansatz, our model considers the configurational
dynamics of collectives of beating particles as a diffusion process. We incorporate the effect of heterogenous particle buoyancies
through the inclusion of a parameter modulating the size of bubbles in analogy to the role of the Pt patch. Our beating
particles are perfectly suited for this sort of analysis, even more so than others (e.g., robot swarms). In part, this is due
to the physics of fluid dynamics at low-Reynolds numbers (∼0.25 Re for our system) [25]. In this regime, inertia ceases
to influence the behavior of systems, leaving viscous forces and stochastic thermal fluctuations to affect their dynamics
substantially—thereby making a diffusive approximation natural.

Our model elucidates the role of design parameters on the structure of the system-level fluctuations on the basis of two
primary assumptions. First, we assume that the behavior of each individual particle i is monotonically modulated by some
real-valued design parameter Ui from a set U = {U1, · · · , UN} for a system of N particles. These design parameters correspond
by analogy to the Pt patch size. Second, we assumed that particle i’s bubble burst only affects the other members of the
collective and not itself, which broadly matches experimental observations. We can think of the Ui parameters as implicitly
determining the strength of the impulse imparted by particle i’s bubble burst onto its neighbors. In particular, we model the
effect of this parameter and the bubble burst strength ai according to the following Boltzmann-like monotonic relationship,

ai =
1

Z
e−Ui (15)

where Z is a normalization factor given by Z =
∑N

i=1 e
−Ui . In other words, the ai parameters can be thought of in analogy

to the size (and strength) of bubbles that a given particle can support. Hence, we can motivate this modeling choice by
envisioning the gas in bubbles distributing itself according to an energy landscape specified by our Ui parameters, and thusly
influencing the bubble popping strength ai. The normalization factor Z arises from the fact that we are not interested in the
absolute magnitude of the bubble bursts but rather the effect of their relative magnitudes on the collective behavior.

In the main text, we made use of an observable termed the “breathing radius” for purposes of analysis. The breathing
radius is the mean Euclidean distance of the particles to the centroid of the collective. Similarly, here we will only consider
the statistical properties of the dynamics of a breathing-radius-like observable, r̄(t), under a simple diffusive model. As in the

main text, r̄(t) is an averaged quantity over particles: r̄(t) =
∑N

i=1 ri(t). By assumption, a bubble burst at particle i leaves
particle i stationary, but a burst from some neighbor j exerts an impulse of random direction onto particle i. In this case, the
dynamics of ri(t) evolve according to

ṙi(t) =
∑
j ̸=i

aj · ξj (16)

where ξj is normally-distributed delta-correlated multiplicative noise in the Itô convention. Note that this construction
results in an anisotropic diffusion tensor without spatial dependence, as we are not modelling the geometry of interparticle
interactions but rather their statistical fluctuations. From this specification of the system’s diffusive dynamics, we can apply
rattling theory to understand the effect of our design parameters Ui on the self-organized collective behavior of the system.

Given this formulation of the system dynamics, we proceed by calculating the effect of parameter changes on the magnitude
of system-level fluctuations. Letting r(t) = [r1(t), · · · , rN (t)]T , the correlation structure of the system is

⟨ṙi(t), ṙj(t)⟩ =
∑
k ̸=i

∑
l ̸=j

akalδkl =
∑
k ̸=i,j

a2k =
1

Z2

∑
k ̸=i,j

e−2Uk (17)

where δkl is the Kronecker delta. We note that the correlation structure of the system has no dependence on time (i.e., it has
infinite temporal correlation) and no dependence on configuration r(t), leaving the design parameters Ui as the only variables
with an effect on the system behavior. Finally, in order to express the system’s rattling in terms of its design parameters we
require an analytical expression for the determinant of its covariance tensor, which is challenging in general. Fortunately,
for this particular correlation structure there exists such a closed-form expression, which enables us determine the system’s
rattling as a function of its parameters:

R(U) =
1

2
log det⟨ṙi(t), ṙj(t)⟩ = log

(
(N − 1)

∏N
i=1 e

−Ui

ZN

)
. (18)

Equipped with an understanding of how the system’s parameters affect its rattling (and thus its degree of order), we can
now use the model as a tool to guide our experimental design. While there are infinitely many parameter combinations for a
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Supplementary Figure 2: Rattling as a function of patch size in diffusive model. Here, we study the effect of a given
particle’s U parameter (in analogy to Pt patch size) on the rattling of collectives of varying sizes. Note that we subtract
the constant offset in rattling due to system size so that R = 0 at U = 0 for all N . We find that any variability in the size
of the particle’s patch produces a drop in rattling, leading to asymmetry-induced order. When a particle becomes inert
as U increases, it stops contributing to system-level fluctuations, leading to a modest drop in rattling independent of N .
However, as U decreases the modified particle’s bubble bursts dominate and effectively become the sole source of variance in
the system’s configurational degrees of freedom. Such coordination among degrees of freedom leads to a sharp drop in rattling
dependent on N .

given collection of N particles, one of the simplest design alterations to study is the effect of a single particle differing from
the rest—for reasons that we will see shortly, we term this particle a designated leader. In this setting, one particle will have
its parameter be UDL while the rest of the N − 1 particles will have it be Ū (which we take to be a constant fixed a priori).
Rearranging the expression in Supplementary Equation (18), we have the following expression

R(UDL, N) = −UDL + log

(
(N − 1)e−(N−1)Ū(

e−UDL + (N − 1)e−Ū
)N
)
,

which allows us to make predictions about the behavior of a collection of N beating particles with a single designated leader.
However, much in the same way that entropy can trivially depend on system size (e.g., number of microstates), our

expression for rattling in Supplementary Equation (2) does as well. Thus, to focus on the dependence of R(UDL, N) on UDL, we
subtract the constant bias that system size contributes to the value of rattling. To do this, we calculate R(UDL, N)−R(Ū , N)
for a choice of Ū that we fix across all system sizes, where we note that R(Ū , N) is merely a constant that offsets the value
of rattling to be zero when UDL = Ū . Since R(Ū , N) is exclusively a function of the number of particles for a given Ū ,
subtracting it from R(UDL, N) precisely removes the constant contribution of system size to the overall magnitude of rattling.
As detailed in [19], constant offsets to the rattling values of a system do not affect its behavior. Only changes to the rattling
landscape—that is, changes to the relative rattling values between configurations (or parameters)—have an effect on system
behavior. This implies that comparing the absolute rattling values across systems is of limited use, which motivates our
approach (as in Fig. 2d and Supplementary Fig. 2).

In Supplementary Fig. 2 we show the results of varying the parameters of the designated leader for collectives of various
sizes, while fixing Ū = 0 and subtracting the bias in rattling due to system size. Crucially, we observe that any deviation from
the parameter values of the rest of members of the collective (i.e., away from UDL = 0) results in a reduction in rattling. Thus,
our model predicts that any amount of heterogeneity will lead to increasingly ordered system states. Such asymmetry-induced
order has been studied in networked systems of oscillators [12–15], but its emergence as a low-rattling phenomenon is a novel
finding.

Through this mechanism, order arises in one of two distinct ways. First, as UDL increases, the designated leader particle
becomes effectively inert. This is to say that the strength of its bubble bursts aDL asymptotically approach zero, as though
it were a patchless particle. As a result, the leader particle acts as dead weight and does not contribute to system-level
fluctuations, leading to a modest decrease in rattling—independent of the total number of particles—that matches experimental
observations. Second, as UDL decreases, the designated leader particle’s bubble bursts become stronger and its contribution
to the magnitude of system-level fluctuations dominates over those of other particles. In turn, this effectively leads to a
concentration of all variability and randomness in the system into a single of its many degrees of freedom, thereby leading
to significant correlations in the behavior of all particles and a resulting drop in rattling. Note that as more particles are
added more degrees of freedom become correlated, leading to sharper drops in rattling as a function of N . Hence, on the basis
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Supplementary Figure 3: Effect of designated leader on self-organization. By introducing a designated leader, the
entropy of the bubble burst forcing patterns decreases (since they become periodic), which has an effect on the self-organization
of the system. On the left panel, we simulate the dynamics in Supplementary Equation (16) and calculate their rattling
and steady-state densities numerically. On the right panel, we consider experimental data from an 8 particle collective in
both standard (∆UDL = 0%) and designated leader configurations (∆UDL = 40%), which we then process using the same
procedure as for the left panel. While the absolute magnitudes of parameter values for the simulation are arbitrary, the ∆UDL

values are determined from the actual Pt patch sizes used on the experimental systems. For both the simulated and the
experimental data, the results are consistent with rattling theory (in particular, Supplementary Equation (19) with γ = 1).
This procedure was then repeated for experimental collectives of other sizes with the same results. Hence, bubble burst
patterns of varying entropy (which depend on system design parameters) provide an explanation for the emergence of system
order that is consistent with our results.

of these results and other studies of asymmetry-induced order we chose to study the influence of designated leaders on the
collective behavior experimentally by producing leader particles with larger Pt patches.

Another consequence of applying the rattling ansatz to the behavior of our collective of beating particles is that it allows
one to reinterpret the relationship between system elements. In the theory, configurations with exceptionally orderly responses
to external driving forces are selected for the nonequilibrium steady-state of complex systems. Similarly, we can think of the
relationship between the particle configurations (i.e., their relative positions and orientations) and the sequence of forces the
system experiences due to bubble bursts according to this dichotomy. Working from this perspective, rattling theory then
suggests that the entropy of the sequence of bubble bursts can prevent the system from finding orderly configurations by
increasing their rattling (see [19], and in particular figure 4 within). More precisely, we have

p(q) ∝ e−γ(R(q)+S(q)), (19)

where S(q) is the entropy of the driving forces affecting the system at configuration q. Importantly, this expression shows that
the effect of drive entropy is to simply offset a configuration’s rattling.

In the main text, we observed that our system design parameters (i.e., the particle Pt patch sizes) do have a profound effect
on system behavior and also on the bubble burst sequence—changing its behavior from seemingly random to almost perfectly
periodic (see Fig. 2). If we were to accept the hypothesis presented by Supplementary Equation (19), then this difference in
behavior should be explained by the difference in the entropy generated by the bubble burst patterns at different system
parameters. Moreover, if this is the case, then the results from analyzing standard and designated leader systems should lie
on the log-linear correlation of Supplementary Equation (19), with a slope of γ (which nominally is of order 1). Indeed, this is
precisely what we observe in Supplementary Fig. 3 for simulations of the model dynamics and for our experimental data
samples.

While throughout this section we have motivated the analytical model in specific reference to our experimental beating
particles, our model and results generalize beyond our system. At its core, our generic model describes the structure of
statistical fluctuations in a collection of strongly interacting degrees of freedom (i.e., under strong mixing conditions). This is
to say that the details of how the magnitudes of said fluctuations are parametrized by system properties are inessential to
the results. Particularly, the equation for rattling in Supplementary Equation (18) can be expressed in terms of ai directly

as log
(
(N − 1)

∏N
i=1 ai

)
, which allows one to freely model the way in which individual degrees of freedom contribute to the

overall system-level fluctuations. Thus, rattling theory, as well as the mechanism we have outlined for asymmetry-induced
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order, present a general framework from which to understand the effect of system design parameters on the self-organized
behaviors of the system—providing a novel approach to micro-system design based on thermodynamic principles relevant to
the scales of interest.
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3 Note on Microelectronic Low-Frequency Oscillators

In this section, we elaborate on the design and fabrication challenges of microelectronic oscillators with a frequency on the
order of a hertz, which we briefly alluded to in the Introduction part of the main text. Given the relatively large footprints of
integrated capacitors and inductors available, RC- and LC-based oscillators are hardly compatible with the limited space on
micrometre-sized machines [26]. For example, the frequencies of RC oscillators, such as a bi-inverter or a Schmidt Trigger
oscillator, are on the order of the reciprocal of their respective RC constants, i.e. fRC ∼ O(1/RC). Taking the capacitance
to be a generous 40pF for an area of 100µm×100µm [27], one would require a massive resistor of 25GΩ to achieve an RC
time constant of 1s. Assuming a resistivity of 100kΩ/µm2 of polysilicon, this resistor alone would occupy 2.5×105µm2.
Alternatively, one may opt to use a frequency divider to bring the kHz-order frequency of a typical microelectronic relaxation
oscillator down to 1Hz. Suppose the starting frequency is 17kHz [28], a cascade of 15 T flip-flops is needed, each of which
is constructed from at least 20 transistors [29]. Should 300 transistors be fabricated onto a 100µm×100µm microchip, the
appropriate transistor node would be 500nm. While well within the realm of possibility, such technology typically still requires
the involvement of a commercial foundry outside of academic institutions. Similarly, thyristor-based oscillators of frequencies
from 20Hz and up have been foundry-fabricated with a feature size of 180nm [26]. The integrated circuit design expertise
and capital investment required are the reasons for a high barrier-to-entry. Note that the area reserved for onboard energy
harvesting and storage units, as well as for miscellaneous electronics, may further constrain the real estate available to the
microelectronic oscillator.

4 Note on the Fuel Cell’s Open-Circuit Voltage

Supplementary Fig. 13 shows that the open-circuit voltages of the Pt-Au and Pt-Ru fuel cell devices, VOC, exhibits a very
weak dependence on the peroxide concentration [H2O2], unlike the trend of the short-circuit current densities (Fig. 4c and
Supplementary Fig. 14). Here we provide a simple explanation based on electrochemical kinetics. We consider the following
two pairs of forward and reverse reactions taking place on a single electrode:

H2O2 −→O2 + 2H+ + 2e−

O2 + 2H+ + 2e− −→H2O2

R1, ϕ◦
eq,1 = +0.68V

2H2O−→H2O2 + 2H+ + 2e−

H2O2 + 2H+ + 2e− −→ 2H2O

R2, ϕ◦
eq,2 = +1.77V

where ϕ◦
eq denotes the standard equilibrium potentials. The Butler–Volmer equation suggests that only one half-reaction from

R1 and R2 each is dominant at the mixed potential ϕmix, defined as the potential where the total current equals 0 [30]. If we
consider the oxidative half-reaction of R1 and the reductive half-reaction of R2 (choosing the other two half-reactions does not
alter the conclusion), the full Butler-Volmer kinetic expression is given by [31]:

i1(ϕ) = nFk1[H2O2]
νH2O2 exp

[α1F

R̄T
ϕ
]

(20)

i2(ϕ) = −nFk2[H2O2]
νH2O2 [H+]νH exp

[
− (1− α2)F

R̄T
ϕ
]

(21)

where ϕ is the applied potential on the absolute scale, i1(ϕ) and i2(ϕ) the respective current densities, n the number of
electrons transferred, F the Faraday constant, k the rate constants, ν the reaction orders, α the the transfer coefficients, R̄
the universal gas constant, T the absolute temperature. We can obtain the mixed potential ϕmix by solving:

i1(ϕmix) + i2(ϕmix) = 0 (22)

which is equivalent to −i1(ϕmix)/i2(ϕmix) = 1. While the exact form of the solution is of little relevance to us, the division of
the right-hand side of Supplementary Equation (20) by that of Supplementary Equation (21) reveals the cancellation of the
[H2O2] terms under the typical assumption of equal reaction order. That is, ϕmix is independent of the peroxide concentration
for a given electrode. Because the open-circuit voltage between two spatially separated electrodes (such as Pt and Ru) is
essentially the difference in the respective mixed potentials (∆ϕmix), VOC naturally sees little dependence on [H2O2]. This
allows us to compare our VOC measurements with past mixed potential studies carried out at lower [H2O2]. For example,
Wang and colleagues [32] measured a ∆ϕmix of 30mV between Pt and Au, and 140mV between Pt and Ru, both consistent
with our results.
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5 Note on the Energy Expenditure

5.1 Energy Conversions of the Mechanical Oscillation

Within each period of the emergent mechanical oscillation, chemical energy stored in the H2O2 fuel is converted into the
particles’ kinetic energy upon the collapse of the O2 bubble. The kinetic energy imparted to two outgoing particles simply take
the form of Ek = mv2, where m is the mass of each particle and v the maximal velocity right following the bubble collapse.
With m = 2.34µg for a 500µm-diameter particle and v = 3.2× 104µm/s measured from experiments, Eout is estimated to be
2.40× 10−12J per cycle.

The chemical energy consumed per cycle may be computed as:

Echem =
2PVb,th∆H

RT

where Vb,th denotes the bubble volume at threshold, estimated to be 9.81×10−2µL in a 2-particle homogeneous system in
1mL of 10% H2O2. We assume an ambient pressure P of 1atm and temperature T of 25◦C, as the excess Laplace pressure
within the bubble before collapse is a negligible 5.0× 10−3atm. ∆H, the enthalpy change of the decomposition reaction, is
98.24kJ/mol at given conditions, equivalent to an energy density of 2.89kJ/g H2O2 or 0.29kJ/g 10wt% H2O2 solution [33].
Echem per cycle is computed to be 7.88× 10−4J. The portion of the chemical energy converted to the work of expansion is:

WPV = PatmVb,th + 4πγR2
b,th

where Rb,th is the threshold radius assuming a spherical bubble. The latter term of 7.41× 10−8J is the surface energy Esurf,
i.e. the work against the Laplace pressure during bubble growth. To summarize, therefore, 1.26% of the original chemical
energy contributes to a WPV of 1.00× 10−5J. 0.74% of the work of expansion is stored as the surface energy. Finally, the
kinetic energy gained by the particles account for 0.032‰ of surface energy stored in the bubble.

5.2 Energy Conversions of the Microgenerators

As the microgenerator converts the chemical energy from H2O2 decomposition to electrical work, it is of interest to calculate
the proportion of total H2O2 molecules consumed which contributed to the electrical current [34, 35]. Given that each
electrochemically redoxed H2O2 molecule transfers an electron, ON-state currents of 180.66nA (in the absence of an electrical
load) and 15.27nA (with a load, i.e. the actuator) are respectively attributed to 1.87×10−12 and 1.58×10−13 moles of H2O2 per
second. These correspond to 0.76‰ and 0.063‰ of the total peroxide consumption rate (2P/RT ·dVb/dt = 2.45× 10−9mol/s),
respectively. The former is in agreement with prior literature [34], which estimated an electrochemical contribution of 0.5‰.
Since more than 99.9% of the consumed H2O2 decompose via the same non-electrochemical pathway as in the beating particles
with no fuel cells aboard, generation of the electrical current has a negligible impact on the mechanical oscillation if all other
conditions are kept the same. Along the same lines, additional fuel cell particles are not expected to diminish the electrical
signals observed.
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Supplementary Figures

Supplementary Figure 4: Beating particle fabrication steps. a, An array of SU-8 polymeric microdiscs were defined
and patterned on a Si wafer with standard photolithography, followed by electron-beam physical vapor deposition of Pt on
top. b, The particles were subsequently lifted off in heated KOH solution which etched into the Si substrate. The KOH was
displaced by water in which the lifted off microparticles were stored. c, Alternatively, a film of PMMA polymer was spun over
the microparticle array. Together they would delaminate from the substrate in heated KOH solution. The PMMA was then
removed with an acetone rinse. The lifted off particles were transferred to water for storage.
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Supplementary Figure 5: Detailed comparison between experimental and simulated beating behaviours of two
particles. a, Mechanistic model simulations and experimental snapshots taken at representative stages of a beating cycle.
b, The simulation and experiments are in excellent agreement, evident from the matching curves of the breathing radius,
previously also shown in Fig. 1g. We note that the mechanistic model captures fine details of the self-oscillation, such as the
subtle step change in (b) at approximately 69s. The step increase was a result of the merged bubble pushing the particles
outwards slightly, reflected by both the experiment and simulation in (a). c, This panel shows the excellent agreement between
the experimental bubble radii and those predicted by the mechanistic model. The former were measured manually from the
raw video data.

Supplementary Figure 6: Beating frequencies over time from moving window recurrence analyses. The same
histograms as in Fig. 1i of the main text were generated, but here only for breathing radius data within a moving window of
150 frames (5s). Frequencies calculated from the most probable recurrence time of each window were plotted as a function of
time. The beating frequencies in all experiments are constant throughout, demonstrating robust periodicity. Furthermore,
curves from experimental replicates overlap. The frequencies from moving window analyses agree with those shown in Fig. 1j
for all the H2O2 concentrations. These concentrations respectively correspond to 6-, 3-, 2-, and 1-fold volumetric dilution of a
30wt% H2O2 solution.
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Supplementary Figure 7: Maximum breathing radius and interarrival time of two identical particles as a function
of the H2O2 volume. A larger volume of H2O2 solution corresponds to a reduced curvature of the liquid-air interface the
particles reside in, which in turn weakens the global restorational force that resists parting of the particles. The breathing
radius (a) therefore increases with the H2O2 volume, which consequently lengthens the intervals between consecutive bubble
collapses (b). Due to the periodicity of all these 2-particle systems, the respective interarrival times are equivalent to the
periods of oscillation. Each error bar denotes a standard deviation among the oscillation cycles within an experiment.

Supplementary Figure 8: Maximum breathing radius and interarrival time of two identical particles as a function
of the particle size. All particles were fabricated by depositing 5nm Cr and 50nm Pt onto 10µm-thick SU-8 polymer. The
500µm, 250µm, and 100µm-diameter particles were designed to have Pt patches 250µm, 125µm, and 100µm in diameter,
respectively. As with Supplementary Figure 7, the oscillation amplitude exhibits an increasing trend with respect to the
particle diameters (a). The interarrival times (b), however, decrease with the particle size. Due to the periodicity of all these
2-particle systems, the respective interarrival times are equivalent to the periods of oscillation. Each error bar denotes a
standard deviation among the oscillation cycles within an experiment.
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Supplementary Figure 9: Robustness of the emergent oscillation to perturbations. In these two experiments, we
intentionally disturbed a system of two identical particles by (i) deforming the liquid-air interface with a pipette [36], (ii)
stirring the H2O2 drop, and (iii) shaking the drop back and forth. It is evident in the breathing radius trajectories that
the collective oscillation resumes promptly following the perturbations (shaded region) with its amplitude and periodicity
unchanged, thus demonstrating robustness. Data discontinuities during the perturbations are a result of blurry frames or
particles temporarily exiting the camera field-of-view. The inset micrograph shows the particles approaching the pipette due
to the deformed interface. Scale bar, 1mm.
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Supplementary Figure 10: Compiled snapshots, breathing radius trajectories, and phase portraits for heteroge-
neous/DL systems of N = 2 to 6. Systems of all sizes exhibited clear periodicity in their beating behaviours with stable
limit cycles. Scale bar, 500µm. All experiments were performed in 1mL of 10.7wt% H2O2.
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Supplementary Figure 11: Compiled snapshots, breathing radius trajectories, and phase portraits for heteroge-
neous/DL systems of N = 7 to 11. Systems of all sizes exhibited clear periodicity in their beating behaviours with stable
limit cycles. Scale bar, 500µm. All experiments were performed in 1mL of 10.7wt% H2O2.

Supplementary Figure 12: Progression of a large-scale homogeneous collection. While we have established in Fig.
2 of the main text that the periodicity of homogeneous systems breaks down easily as N increases, we observe intriguing
hierarchical organization of the bubbles in this 50-particle collective over a span of 8s. Bubbles from individual particles
merge and grow (i), resulting in the intermediate situation in (ii) where a large bubble situated at the H2O2 drop’s apex is
packed around by smaller ones. Following further merger and growth (iii), the system eventually collapses (iv). Highlighted in
yellow circles are bubbles larger than 350µm in radius. With a number of particles distributed along the perimeter, a bubble
is observed to grow far beyond the typical threshold size in few-particle homogeneous systems (cf. bubble sizes in DL systems
in Supplementary Figs. 10 and 11). Scale bar, 1mm. All experiments were performed in 1mL of 10.7wt% H2O2.
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Supplementary Figure 13: Open-circuit voltage of a Pt-Ru device as a weak function of H2O2 concentration. The
observation is explained by the auto-redox nature of the H2O2 decomposition reaction (Supplementary Section 4). Error bar,
standard deviation.

Supplementary Figure 14: Short-circuit current density as a function of H2O2 concentration for a Pt-Au device.
(cf. Fig. 4c of the main text). Error bar, standard deviation.
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Supplementary Figure 15: Bimorph actuator experimental setup. The microactuator in PBS solution is connected via
external wiring to the beating system in an H2O2 drop. The mechanical self-oscillation is translated to an oscillatory electrical
current as illustrated in Fig. 4a, which powers cyclic motion of the actuator (Fig. 4e).

Supplementary Figure 16: Oscillatory mechanical beating drives on-board oscillatory current. (See also Fig. 4e of
the main text). As a standard 500-µm particle beats with a Pt-Ru fuel cell device (Fig. 4b, also Methods), the bubbles collapse
at regular intervals as indicated by the spikes in the breathing radius trajectory (r(t), top). Removal of the bubbles restores
the electrochemical reactivity of the fuel cell electrodes, and therefore the current (bottom) peaks precisely as r(t) does. The
current measured in this experiment is an order of magnitude higher than that in Fig. 4e since the system characterized here
was not connected to an actuator.
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