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Abstract—High-performance autonomous racing presents a
challenging proving ground for robot learning algorithms.
In safety-critical learning scenarios such as these, typical
exploration-exploitation tradeoffs carry real-world risk to both
costly hardware and environmental harm. As a result, sample-
efficient learning algorithms are essential to minimizing cumu-
lative risk exposure during deployment. This paper presents
preliminary results for a sample-efficient online algorithm for
safe active learning. By leveraging contraction theory within
an information-maximizing Model Predictive Contouring Con-
trol (MPCC) framework, our method generates online optimal
perturbations to minimum time/curvature racelines, thereby
enhancing sample efficiency while adhering to safety constraints.
We plan to demonstrate this approach for learning predictive
models of tire loads on a real-world hardware testbed—the
Dallara AV-24 as part of the Indy Autonomous Challenge—
showcasing its potential to improve both learning efficacy and
operational safety in high-speed autonomous systems.

I. INTRODUCTION

High-performance autonomous racing circuits such as the
Indy Autonomous Challenge (IAC) push robot learning algo-
rithms to their operational limits [1]. The IAC is a competition
series featuring various race formats for autonomous vehicles,
including time-trials and head-to-head racing at speeds exceed-
ing 80 m/s (180 mph). Teams compete using the Dallara AV-24
(see Fig. 1), a modification of the Indy NXT racecar equipped
with a suite of sensors including inertial measurement units
(IMUs), light detection and ranging units (LiDARs), radars,
and cameras. Due to their speed, the consequences of fail-
ure during deployment can be catastrophic, involving costly
hardware damage and significant environmental risk [7]. In
such extreme, safety-critical conditions, achieving competitive
performance hinges on precise vehicle control, requiring ac-
curate underlying system models. Among these, tire models
are particularly crucial, as they govern the forces a vehicle
can generate. However, accurately identifying empirical tire
models, such as the widely used Pacejka model [4], sensitively
depends on data from the limits of handling—a regime that is
typically unsafe to explore during normal vehicle operation.

Given the difficulty of spontaneously acquiring the data
needed for robust tire model identification, active learning
strategies become indispensable [18]. Active learning presents
a framework for intelligently selecting robot actions or design-
ing vehicle inputs that maximally excite unmodeled system

dynamics or reduce uncertainty in model parameters, thereby
improving identification with fewer data points [3]. Common
active learning approaches in robotics involve optimizing
information-theoretic measures, such as those derived from
the Fisher information matrix or from ergodicity, to guide
exploration and data acquisition [19, 6]. However, control in-
puts derived purely from information maximization objectives
can lead to aggressive or erratic behaviors. In the context
of high-speed autonomous racing, information-maximizing
actions pose a substantial safety risk precisely due to their
optimality.

The tension between informative exploration and opera-
tional safety drives the need for safe active learning method-
ologies. In order to maintain vehicle safety without sacrific-
ing performance, we propose to frame our approach within
the Model Predictive Contouring Control (MPCC) frame-
work [11]. MPCC problems represent a subset of model pre-
dictive control tasks in which the objective is to minimize the
Euclidean distance between the agent’s path and a reference
path while simultaneously maximizing the speed at which the
agent traverses the path. This framework has proven effective
for time-optimal control in autonomous drone racing [16],
and has recently been extended to provide safety guarantees
that ensure persistent solution feasibility and collision avoid-
ance [10]. By adapting MPCC to incorporate information-
maximization, we aim to develop an optimal control method-
ology capable of actively learning critical system parameters
that characterize tire loads in a manner that is both sample-
efficient and provably safe.

To this end, we present preliminary work towards a safe
active learning algorithm designed for the rigorous demands
of high-speed autonomous racing. Our approach introduces
a sample-efficient methodology for ensuring safety during
robot learning. By applying contraction-theoretic analysis
within an information-maximizing MPCC, our algorithm is
capable of generating optimal, safety-aware perturbations to
nominal racelines. We provide validation of our information-
maximizing inference framework on data collected during test-
ing at the Laguna Seca Raceway [2]. We plan to demonstrate
our approach by learning tire load parameters in hardware
experiments on the Dallara AV-24 platform, highlighting its
potential for robot learning in safety-critical systems.
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Fig. 1. Caltech Racer active learning autonomy stack overview. Our system architecture is comprised of modules for sensing, state estimation, tracking
control, and model predictive planning with online model learning tailored for high-speed autonomous racing. In addition to standard state information, the
planner estimates tire loads in real-time, which allows it to actively improve model learning.

II. METHODS

A. Vehicle Dynamics & Tire Models

We model the autonomous racecar using a rear-wheel driven
bicycle model (see Fig. 2), which lumps the front and rear
axle dynamics [15]. We augment this model by considering
the virtual dynamics of vehicle progress along its reference
path, modeled through simple single integrator dynamics. The
fictitious state, s, representing progress along the reference
path and its rate, vs, are central to the MPCC formulation.
By treating s as a state and vs as a virtual control input, we
are capable of decoupling the spatial problem of following
a geometric path from the temporal problem of how fast to
traverse it. This contrasts with traditional trajectory tracking
MPC, which typically follows a fixed reference.

Including the reference path progress variable, we de-
fine the augmented state of the vehicle as, x =
[X,Y, φ, vx, vy, ω, s]

T ∈ R7, where (X,Y ) are the global
Cartesian coordinates of the vehicle’s center of gravity (CoG)
in map frame, φ is the yaw angle, vx and vy are the
longitudinal and lateral velocities in the vehicle body frame,
respectively, and ω is the yaw rate. The control inputs to
the vehicle are u = [d, δ, vs]

T ∈ R3 where d represents the
commanded drive/brake force expressed as a slip ratio and
δ is the steering angle of the front wheels. Equipped with
our state representation, the continuous-time vehicle dynamics
ẋ = f(x, u) are given by:

Ẋ = vx cos(φ)− vy sin(φ)

Ẏ = vx sin(φ) + vy cos(φ)

φ̇ = ω

v̇x =
1

m
(Fr,x − Ff,y sin δ +mvyω)

v̇y =
1

m
(Fr,y + Ff,y cos δ −mvxω)

ω̇ =
1

J
(Ff,yLf cos δ − Fr,yLr)

ṡ = vs (1)

where m is the vehicle mass, J is the moment of inertia about
the vertical axis, and Lf and Lr are the distances from the
CoG to the front and rear axles, respectively.

The terms Ff,y and Fr,y are the lateral tire forces at the
front and rear axles, and Fr,x is the longitudinal tire force at
the rear axle. Lateral tire forces are modeled in accordance
with a simplified Pacejka tire model [4, 5]—an empirical
tire model that despite not being derived from first principles
attains highly-accurate predictions of tire forces—while the
longitudinal tire forces are modeled linearly for simplicity.
Then, tire forces are given by

Fτ,x(x) = Cτ,x d

Fτ,y(x) = Dτ,y sin(Cτ,y arctan(Bτ,y ατ (x)), (2)

where we defined θτ = [Cτ,x, Bτ,y, Cτ,y, Dτ,y]
T for τ ∈

{f, r} as the vectors of parameters to be identified in order to
characterize tire loads in terms of wheel slip ratios and angles,
d and ατ (x), respectively. For the front and rear axles, the slip
angles are

αf (x) = δ − arctan
(vy + Lfω

vx

)
αr(x) = − arctan

(vy − Lrω

vx

)
. (3)

Since tire forces govern the impact that control inputs have on
the dynamics in Eq. 1, correctly identifying θτ is essential to
the design of effective motion plans.

B. Model Predictive Contouring Control

Equipped with a dynamical model, we review the standard
MPCC formulation [12]. Given a reference path, the core
objective of MPCC is to optimize a cost function that balances
competing goals: minimizing contouring error, êck, minimizing
lag error, êlk, maximizing the rate of progress along the path,
vs, with regularization of control effort. This formulation
allows the vehicle to autonomously adjust its speed along
the path, slowing down for sharp corners and accelerating on
straight sections, to achieve objectives such as minimum lap



Fig. 2. Bicycle model. Diagram of rear-driven bicycle model that lumps
front and rear axle dynamics, with forces acting on the car shown in blue.

time while respecting vehicle dynamics and operational con-
straints. The optimization problem is solved using sequential
quadratic programming (SQP) [14] at each control step over
a finite prediction horizon, yielding an optimal sequence of
control inputs and desired setpoints that are then passed onto
the tracking controller.

To define the tracking objectives, we consider a geometric
reference path, Pd, that is the result of an offline minimum
time/curvature optimization [8]. Given vehicle states xk at
discretized time indices k, we use the path progress sk to
sample corresponding points on the reference path. Then, we
can use the corresponding desired coordinates and orientations
[Xd

sk
, Y d

sk
, φd

sk
]T ∈ Pd to formulate the MPCC optimization

as follows:

min
u1:N

JMPCC(x1:N , u1:N )

s.t. x0 = x(0), xk+1 = f̂(xk, uk)

xk ∈ XTrack, x ≤ xk ≤ x

∆uk = uk − uk−1

u ≤ uk ≤ u, ∆u ≤ ∆uk ≤ ∆u (4)

with

JMPCC =

N∑
k=1

[
êck
êlk

]T [
qc 0
0 ql

] [
êck
êlk

]
− qvvs,k +∆uT

kR∆uk,

where qc, ql, qv ∈ R+ assign weights to the contouring, lag
and progress terms of the objective function, respectively, and
R ≻ 0 is a positive definite matrix. The contouring and lag
error terms are defined in the following way,

êck = sin(φd
sk
)(Xk −Xd

sk
)− cos(φd

s,k)(Yk − Y d
sk
)

êlk = − cos(φd
sk
)(Xk −Xd

sk
)− sin(φd

sk
)(Yk − Y d

sk
), (5)

which specify notions of lateral and longitudinal error in
the frame of the desired trajectory. The discrete-time system,
f̂ , results from time integration of the dynamics in Eq. 1.

Lastly, we note that the constraints specified in Eq. 4 capture
track bounds (e.g., geometric constraints), state limits (e.g.
maximum velocities), actuator limits (e.g., steering range), and
actuator bandwidths (e.g., brake pressure rate), respectively.

C. Fisher Information & Belief Updates

Prior to retooling the MPCC formulation for information-
maximization, we must introduce a measure for quantifying
information amenable to real-time optimization, as well as our
procedure for updating our parameters online. To this end, in
this work we make use of the Fisher information [9], which
has a long history in control for the design of probing signals
for optimal parameter estimation [13]. The Fisher information
provides a general means of quantifying the amount of infor-
mation that a random variable Z contains about the estimate
of an unknown vector of parameters θ. More formally, the
Fisher information is defined as

F(θ) = Ez∼Z

[( ∂

∂θ
log p(z|θ)

)( ∂

∂θ
log p(z|θ)

)T
∣∣∣∣∣θ
]

(6)

where p(z|θ) represents the conditional probability density of
observing sample z given the choice of parameters θ. In other
words, F(θ) captures the local sensitivity of our observations
to changes in our parameters.

Within our problem domain, we consider the vec-
tor z = [F̂f,x, F̂r,x, F̂f,y, F̂r,y]

T to be comprised of
noisy observations of the vehicle tire forces. Then, let
p(zk|θ) = N (h(xk, uk, θ),Σz), where the measurement
model h(xk, uk, θ) represents the functional form of the
tire loads in Eq. 2, θ = [θf , θr] represents a stacked
vector of parameters, and Σz ≻ 0 is a constant. Under
this set of modeling assumptions, for a given dataset D =
{x1, u1, z1, · · · , xM , uM , zM} we may write the following a
sample-based simplified form of the Fisher information:

F̂(θ, x1:M , u1:M ) =

M∑
k=1

∂h(xk, uk, θ)

∂θ

T

Σ−1
z

∂h(xk, uk, θ)

∂θ

In turn, we may now define the following scalar-valued
information metric

I(θ, x1:M , u1:M ) = Tr(F̂(θ, x1:M , u1:M )) (7)

which we may readily incorporate into our MPCC formulation
to perform information maximization.

Lastly, for active learning we require an online procedure for
updating model parameters. To this end, we maintain a proba-
bilistic belief over the unknown tire parameters θ, represented
by p(θk) = N (θ̂k, Pk), where θ̂k is the mean estimate and
Pk is the covariance matrix at time step k. Upon acquiring
a new measurement zk, we update our belief using Bayes’
rule. Given the previous estimate p(θk−1) = N (θ̂k−1, Pk−1),
and the likelihood p(zk|θk), the posterior distribution p(θk|zk)
can be approximated by a Gaussian. In conjunction with a
linearized measurement model, this procedure results in the



Fig. 3. Caltech Racer deployment at Laguna Seca Raceway. As part of the Indy Autonomous Challenge, we deployed our Dallara AV-24 autonomous
racecar at the WeatherTech Laguna Seca Raceway. The track features high-speed straights where we achieved speeds of over 100 mph (see frame 1), as well
as challenging corners with elevation changes (see frame 2).

extended Kalman filter update equations [17]. The posterior
mean θ̂k and covariance Pk are updated as follows:

Kk = Pk−1H
T
k (HkPk−1H

T
k +Σz)

−1

θ̂k = θ̂k−1 +Kk(zk − h(xk, uk, θ̂k−1))

Pk = (I −KkHk)Pk−1 (8)

where Hk = ∂h(xk,uk,θ)
∂θ

∣∣∣
θ=θ̂k−1

is the measurement model

Jacobian evaluated at the prior mean, and Kk is the Kalman
gain. This iterative update allows the system to continuously
refine its estimate of the tire parameters as new data becomes
available.

D. Information-Maximizing MPCC

With these preliminaries out of the way, the information-
maximizing (Infomax) MPCC problem statement is

min
u1:N

JMPCC(x1:N , u1:N )− qII(θ, x1:N , u1:N )

s.t. x0 = x(0), xk+1 = f̂(xk, uk)

xk ∈ XTrack, x ≤ xk ≤ x

∆uk = uk − uk−1

u ≤ uk ≤ u, ∆u ≤ ∆uk ≤ ∆u

∆Ik = I(θ, x1:k, u1:k)− I(θ, x1:k−1, u1:k−1)

|∆Ik| ≤ ∆I. (9)

where qI ∈ R+ assigns a weight to the cost incurred by the
application of the information measure, and ∆I bounds the
amount of information gain per horizon. We note that since the
Fisher information matrix is positive semi-definite, its trace is
always non-negative and so we introduce the negation of the
information measure into the objective function.

In addition to the bound on information gain, ∆I, in order to
guarantee vehicle safety in our problem domain, we introduce
an additional set of constraints to ensure that the vehicle does
not lose traction over the course of an information-maximizing

maneuver. In particular, we require the following constraint is
satisfied in addition to the constraints listed in Eq. 9:

|Fτ,x(xk, uk, θτ ) + Fτ,y(xk, uk, θτ )| ≤ F τ (10)

for each k and for each choice of θ. The bounds F f and F r

represent the best known empirical estimates of the loads that
the vehicle’s tires are capable of bearing. As identification
of θ improves through our information-maximizing estima-
tion procedure, our approach enables safe, iterative envelope

Algorithm 1 Active Learning of Tire Parameters

Require: Initial parameter θ̂0, initial covariance P0, refer-
ence path Pd, measurement covariance Σz , MPCC weights
qc, ql, qv, R, information weight qI , information rate bound
∆I, tire load limits F f , F r, as well as track XTrack, state
x, x, actuation u, u, bandwidth bounds ∆u,∆u, and plan-
ning horizon N .

Init: t← 1, uinit ← InitialControlSequence();
while NotDone() do

xt ← GetState();
zt ← GetMeasurement();
BeliefUpdate():

Ht ← ∂h(xt,ut,θ)
∂θ

∣∣∣
θ=θ̂t−1

Kt ← Pt−1H
T
t (HtPt−1H

T
t +Σz)

−1

θ̂t ← θ̂t−1 +Kt(zt − h(xt, ut, θ̂t))
Pt ← (I −KtHt)Pt−1

SolveInfomaxMPCC():
{u∗

k}Nk=0 ← SolveSQP(xt, uinit, θ̂t,Pd)
uinit ← {u∗

k}Nk=1

ut−1 ← u∗
1

ApplyAction(ut−1)
t← t+ 1

end while



Fig. 4. Tire parameter identification and predicted vehicle body accelerations. We show 2.5 min of body acceleration data (left column) from a 30 min
run collected during field tests at the Laguna Seca Raceway we fit the parameters of our tire load models. Parameter updates are done in accordance with our
specified procedure in batches of 100 samples, resulting the shown RMSE curves (right column) for the predicted longitudinal and lateral body accelerations.

expansion through successive modifications of F f and F r

across experimental deployments. Lastly, we note that in
addition to these safety measures, the bound on ∆Ik enables
a contraction-theoretic analysis of the Infomax MPCC opti-
mization, the proof of which will be presented in a subsequent
archival submission of this work.

The combined active learning methodology is summarized
in Algorithm 1. Given properly initialized model and op-
timization parameters, Infomax MPCC begins by refining
its model parameter estimates based on data using Eq. 8
before instantiating an optimal control problem instance. Then,
equipped with the best current model estimates we use SQP
to solve Eq. 9. Lastly, we take the first action in the solution
horizon and save the rest of the solution as a warm-start to the
next optimization iteration. This process repeats successively
as the model parameter estimate converges, or until the test
concludes.

III. RESULTS

Prior to deploying our active learning framework in a
hardware-in-the-loop fashion, we validate our identification
framework on data collected passively during field experiments
conducted at the WeatherTech Laguna Seca Raceway (see
Fig. 3). We use data collected over the course of a 30
minute test slot consisting of 8 laps with progressively faster
lap times in which speeds of up to 115 mph were reached
(see frame 1 in Fig. 3). The collected data set consists of
complete state, xk, and control, uk, information in alignment
with our dynamics model in Eq. 1. Since directly observing
longitudinal and lateral tire forces is challenging, we instead
make use of zk = [ax,k, ay,k] measurements collected from the
vehicle’s IMU. This is feasible because we are able to plug
in the tire force equations from Eq. 2 directly into the vehicle
dynamics model in Eq. 1 to predict body accelerations. As a
result of the linear relationship between tire forces and body

accelerations, the rest of our parameter identification pipeline
remains unchanged. As a final simplification we assume that
the front and rear axle parameters are the same. That is, our
goal is to identify θ = [Cx, By, Cy, Dy]

T .

Given an initial guess of parameters listed in Table I, we
regressed over the 30 min of data in batches of 100 samples at
a time. For each batch, we linearized the measurement model
once and averaged the loss and descent directions to perform
one parameter update per batch. Our results are illustrated
in Fig. 4, where the right column depicts the root mean
square error (RMSE) in the prediction of longitudinal and
lateral body accelerations over the identification procedure.
The final parameters are listed in Table I and produce more
accurate predictions of body accelerations. This is shown
in the left column of Fig. 4, where initial predicted, final
predicted, and actual accelerations are depicted over the course
of a 2.5 min window of the test dataset. While the overall
quality of predictions improves as a result of our identification
procedure, there are still mismatches between predicted body
accelerations and actual as a result of model inadequacy. For
one, the linear tire force model tends to overshoot its predicted
longitudinal accelerations (e.g., between 470s and 480s), and
the lateral tire force model seems to not fully capture all
relevant effects, leading to some mismatch (e.g., between 370s
and 380s). These results suggest that there is an opportunity

TABLE I
COMPARISON BETWEEN IDENTIFIED MODEL PARAMETERS

Parameter Initial Final Change
Cx 7483.17 7480.77 −0.03%
By 19.79 17.07 −13.76%
Cy 1.50 2.67 78.23%
Dy 1.50 0.91 −39.12%



for the use of machine learning based techniques in order to
augment our tire models and optimize their learning within
the context of our safe active learning framework, which we
plan to explore in future work.

IV. CONCLUSION

In this work, we presented preliminary results in support of
a novel framework for safe, sample-efficient active learning
of tire model parameters tailored to high-performance au-
tonomous racing. By integrating an information-maximization
objective based on the trace of the Fisher information matrix
directly into a safety-constrained MPCC formulation, our
approach generates informative control actions while ensuring
operational safety. The online estimation of tire parameters
is achieved through an iterative estimation procedure, which
refines the parameter beliefs using real-time measurements.
Preliminary validation on real-world data from Laguna Seca
demonstrates the potential of key components central to our
approach, and future work will focus on a full-stack hardware
deployment on the Dallara AV-24 platform to showcase the
complete closed-loop active learning cycle and realize its
potential to enhance model accuracy and vehicle safety at the
limits of handling. This research paves the way for more robust
and adaptive autonomous systems capable of safely learning
in complex, safety-critical environments.
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