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REAL-TIME LEARNING BASED PLANNING FOR AUTONOMOUS
RENDEZVOUS IN SPACE WITH ACTUATOR LOSS OF

EFFECTIVENESS

Satvik G. Kumar *, Joshua Ibrahim †, Thomas A. Berrueta ‡, Soon-Jo Chung §

and Fred Hadaegh ¶

Spacecraft rely on precise guidance and close communications with
ground-control during rendezvous operations. However, when autonomous
spacecraft experience faults, real-time adaptation becomes essential to mission
success. While methods such as model predictive control in principle allow for
online re-planning, the computational demands of solving non-linear optimization
problems can exceed what spacecraft are capable of in real-time. We present a
framework that enables online adaptation to actuator loss of effectiveness faults. We
leverage recent advances in learning-based guidance policies with optimality
guarantees. Our framework incorporates data-driven fault detection based on
analytical error bounds derived from contraction theory, identifies fault parameters
using regularized regression, and performs online adaptation of the neural network
guidance policy to enable system recovery. Simulation results for a chaser
spacecraft in geostationary orbit demonstrate that our adaptive approach
significantly reduces delivery errors compared to non-adaptive methods when faults
are present. The proposed method achieves performance close to the nominal case,
enabling robust, on-board trajectory re-planning for autonomous rendezvous
missions in the presence of actuator faults.

INTRODUCTION

Autonomous rendezvous and docking of spacecraft with both cooperative and uncooperative
objects of interest are key capabilities essential to a wide variety of space missions and
applications. This includes missions such as rendezvous with asteroids, approaching an
uncontrolled satellite, orbital debris removal, encountering interstellar space objects (ISO’s),1

autonomous on-orbit assembly, among many more applications.2 Spacecraft typically rely on
precise guidance and close communications with ground-control during rendezvous operations.
However, fully autonomous spacecraft operation is important as it can both reduce costs as well as
enable more remote mission concepts.3

One key aspect of fully autonomous spacecraft operation is the ability to fully recover from
faults. Spacecraft can experience a multitude of faults during operation, including actuator faults,
sensor faults, and software faults.4 One specific type of actuator fault that spacecraft can experience
includes actuator loss of effectiveness where actuators are unable to generate its full intended force
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or motion.5 If a spacecraft has faults or unplanned disturbances, it may deviate from its original
planned trajectory. Many traditional techniques for fault-tolerant control focus on adapting the
controller to continue to track the original trajectory.6 However, there are many instances where
online re-planning of a new trajectory is necessary.

Autonomous re-planning of trajectories in space is challenging due to the computational
constraints of spacecraft. Since computers must be radiation hardened for space operation,
spacecraft tend to be equipped with compute-limited processors. This presents issues for online
trajectory re-planning because most methods, such as model predictive control (MPC), tend to be
computationally expensive. To circumvent this issue, one avenue researchers have explored is the
use of analytical approximations amenable to efficient trajectory re-planning such as the linearized
Clohessy-Wiltshire equations.7 While these methods offer computational speed, they sacrifice
solution accuracy, potentially hindering critical off-nominal operations such as fault recovery.
Another promising family of solutions leverage the use of neural networks and machine learning to
avoid solving a nonlinear MPC optimization at each time step. In this framework, offline data is
used to train a neural network that can mimic an optimal MPC during online operation. This way,
offline computation is leveraged to achieve near-optimal planning performance during online use.
This framework was explored for space rendezvous operations by Tsukamoto, et al.,1 where the
authors demonstrated a learning system capable of online planning through the use of spectrally
normalized neural networks (SN-DNNs) termed Neural-Rendezvous. However, while this method
presents formal performance guarantees of near-optimality during nominal operations, it fails to
account for faults.

Here, we present an algorithmic framework for spacecraft rendezvous operations under loss of
actuator effectiveness faults, enabling real-time detection, identification, and recovery through
online adaptation of learning-based guidance policies with formal guarantees. In particular, we
present a method that enables online adaptation of a neural-network based guidance policy with
respect to an analytically-derived error bound, allowing our algorithm to detect fault-driven
deviations from the original guidance policy. Figure 1 shows the interaction between all
components of the spacecraft system and where the proposed framework fits in. Figure 2 displays
the problem and a visualization of the real-time adaptation being proposed.

Related Works

Although successful missions with small body surfaces such as NEAR Shoemaker,8 Hayabusa,9

and OSIRIS-REx,10 their safety issues in landing and decent11 illustrate a growing need for robust
and fault-tolerant GNC algorithms for rendezvous. For trajectory tracking and control, traditionally
convex optimization methods12 were used for their computational efficiency due to limited
performance capabilities onboard. Although convex optimization methods can perform well in
ideal conditions, real-time rendezvous requires robust solutions that must operate under significant
nonlinearities—such as irregular body shapes, complex gravitational fields, and solar radiation.13

Consequently, these non-convex constraints and dynamics often force convex approximations
toward suboptimal solutions. To handle non-convexity and to plan complex mission trajectories
such as in missions like the Comet Nucleus Sample Return (CNSR), offline planning using Monte
Carlo simulations were performed to delineate between a slow versus fast descent strategy.14

Model Predictive Control (MPC) has emerged as a powerful approach for space missions, offering
sophisticated capabilities for handling non-convex optimization challenges with optimal results.15



Figure 1 The proposed framework is a real-time learning based planning policy
outlined in the blue box that affects the guidance policy of a spacecraft with faults and
disturbances. Interactions are shown between the overall guidance policy planned
using a SN-DNN, as well as the navigation and conrol subsystems of the spacecraft.

Building on the MPC framework, uncertainty-aware replanning methods have been developed that
enable both distributional control of trajectory possibilities and landing error correction.16

Additionally, tube-based MPC methods ensure robustness in asteroid rendezvous by propagating
uncertainty bounds that characterize allowable deviations from planned trajectories.17

A key limitation of many robust control approaches is the requirement for a priori knowledge of
the disturbance set for proper uncertainty quantification. In practice, spacecraft often encounter
unanticipated faults during maneuvers. For example, in the Hayabusa mission’s first rehearsal, the
loss of two reaction wheels led to inaccurate thrust commands and forced a revised landing site.9

Because spacecraft cannot be repaired once launched, fault-tolerant control (FTC) methods often
rely on physical redundancy to compensate for failures.18 Meanwhile, algorithmic methods have
also been developed to address faults. One such class of algorithms include adaptive control
schemes such as sliding window methods that have been developed to address known faults by
stabilizing attitude control.19, 20 Adaptive controllers have also been developed for spacecraft
rendezvous and docking under actuator loss of effectiveness.21 In the presence of unknown faults,
learning-based methods have emerged for actuator fault isolation.22 While much of the work
focuses on the design and adaptation of a fault tolerant controller previous work has also explored
trajectory re-planning methods which can be combined with a FTC method under actuator
faults.6, 23 While much of the fault-tolerant trajectory re-planning work focuses on setting up and
solving optimization problems, this work focuses on generating guidance policies with faults
utilizing online adaptation of a neural-network guidance policy.



Figure 2 Problem formulation and proposed work of this paper.

Figure 3 The overall methodology describing the relationship between offline model
training, online guidance policy, and online adaptation.

METHODS

To enable real-time fault adaptation during rendezvous operations, we follow a three-pronged
approach: data-driven detection of deviations from state-based, analytically-derived error bounds;



regularized-regression-based identification of actuator loss of effectiveness parameters; and online
adaptation of the SN-DNN guidance policy for system recovery. At each time step, the system
checks for deviations between the current measured position, provided by the navigation framework,
and the originally planned trajectory. If the analytically-derived error bound is exceeded, loss of
effectiveness parameters are estimated and the final layer of the SN-DNN is adjusted to learn the
system’s new dynamics. This entire process is visually represented in Fig. 3. Throughout this
section, we derive analytical error bounds and formalize our problem setting.

Mathematical Formulation

In this work, we study the translational dynamics of a spacecraft traveling relative to a target (e.g.,
an asteroid or ISO). The system evolves under a feedback control law u : Rn × Rn × R≥0 → Rm

with dynamics
ẋ(t) = f(x(t),œ(t), t) +B(x(t),œ(t), t)u(x̂(t), œ̂(t), t) (1)

where t ∈ R≥0. The function œ : R≥0 → Rn represents the time-varying orbital elements of
the target, which themselves evolve according to a separate dynamical equation. The spacecraft’s
position and velocity relative to the target, expressed in a local-vertical local-horizontal (LVLH)
frame centered at the target, is denoted by x : R≥0 → Rn. The functions f : Rn×Rn×R≥0 → Rn

and B : Rn × Rn × R≥0 → Rn×m are known smooth mappings that capture the spacecraft’s
natural motion and how the control input affects it, respectively. In addition, œ̂ : R≥0 → Rn

and x̂ : R≥0 → Rn are on-board estimates of œ(t) and x(t), provided by an onboard navigation
system*. We specifically consider the mass-normalized passive relative orbit dynamics of the form

f(x, t) =

[
ṗ

C(œ)ṗ+G(p,œ)

]
, B(x, t) =

[
O3×3

I3×3

]
(2)

and state x(t) =

[
p(t)
ṗ(t)

]
∈ R6 as utilized in prior work.24, 25 Terms C(œ), G(p,œ) ∈ R3×3 are

nonlinear functions defined in the prior work.24, 25

For the dynamics in Eq. (1), we aim to learn a guidance policy uℓ from data generated by an
offline planner umpc, such that ∥xmpc − xℓ∥ is exponentially bounded under learning errors, input
disturbances, and loss of effectiveness actuator faults. To achieve this, we first compute an offline
optimal trajectory (xmpc, umpc) that encodes the desired state and controller that drives the system
to that state. Then, we use an SN-DNN to learn a guidance policy that imitates MPC-based expert
demonstrations with bounded error ∥uℓ − umpc∥ ≤ ϵ. Lastly, we decompose the controller uℓ into
offline and online components, adapting the online parameters of the learned policy in real-time.

Model Predictive Control Problem

For our learning-based approach we require access to offline expert demonstrations with which
to learn an imitation-learning-based guidance policy. To this end, we synthesize offline expert
trajectories by solving a fixed-horizon optimal control problem in MPC fashion. We formulate our

*For information regarding notation, refer to Table (2).



MPC problem as follows,

u∗(x(t),œ(t), t) = argmin
{x(τ),u(τ)}

∫ tf

t
ℓ(x(τ), u(τ), τ)dτ + F (x (tf ))

s.t. ẋ(τ) = f(x(τ),œ(τ), τ) +B(x(τ),œ(τ), τ)u(τ),

x(τ) ∈ X , u(τ) ∈ U , ∀τ ∈ [t, tf ] ,

(3)

where t ∈ (0, tf ] is the current time at which Eq. 3 is being solved, ℓ(x, u, τ) is an L2 stage cost and
F (x) is the terminal cost. We use L2 control effort as our stage cost and terminal relative position
error as our terminal cost. Lastly, X and U enforce allowable state and control constraints such as
velocity limits and thruster magnitude limits. We denote

umpc(x̂(t), œ̂(t), t) = u∗(x̂(t), œ̂(t), t) (4)

as the optimal offline controller applied to Eq. (1) at each instant in time t resulting in the following
closed-loop system dynamics,

ẋmpc(t) = f(xmpc(t),œ(t), t) +B(xmpc,œ(t), t)umpc(x̂(t), œ̂(t), t). (5)

Thus, we construct an offline dataset of expert demonstrations by repeatedly solving Eq. (3) from
different initial/terminal conditions and appending the resulting trajectories of (xmpc, umpc) as
determined by Eqs. (4) and (5). The MPC problem is solved utilizing the Sequential Convex
Programming (SCP) approach outlined in prior work.26 In an ideal scenario, we would compute an
optimal control input according to Eq. (4) for every instance in time t. However, for a spacecraft
subject to computational constraints and bandwidth limitations, this is computationally expensive.
For this reason, we propose an imitation learning approach that uses offline data to train an
SN-DNN-based guidance policy.

Imitation Learning

In this section, we describe the imitation learning methodology and derive novel bounds on the
performance of our learned guidance policy when subject to additive disturbances. First, let
uℓ(x̂(t), œ̂(t), t, θnn, θa) denote the learning-based guidance policy where θnn represents neural
network parameters and θa represents adaptation parameters. Additionally, let φt

ℓ(x,œ, τ, θnn, θa)
and φt

mpc(x,œ, τ) denote the flow (i.e., solution trajectory) of the system under uℓ and umpc,
respectively.

We parameterize our learned guidance policy, uℓ, in terms of two components: a neural network
mapping Φ(x,œ, t, θnn) trained with offline data and a linear online adaptation component θa(t),
which we optimize in real time. Effectively, θa(t) can be thought of as the final linear layer of
the SN-DNN representing the guidance policy. Together, these components comprise our learned
control policy in the following way

uℓ = θa(t)Φ(x,œ, t, θnn) (6)

where the SN-DNN Φ(x,œ, t, θnn) maps its inputs onto Rm, and θa(·) ∈ Rm×m is a matrix of
adaptation parameters that reweigh the contribution of the neural network output vectors in real
time. We note that m = 3 for the dynamics in Eq. (1).



We utilize a spectrally normalized deep neural network (SN-DNN). Spectral normalization
bounds the Lipschitz constant of the learned neural network, allowing error bounds to be computed
even when making use of neural networks.

To learn an offline guidance model, we fix an initial set of adaptation parameters θa(·) = θfix
a

and define a loss function with respect to which we train our neural network, in line with previous
work.1 We proceed by minimizing

Lnn(θnn) = E
[
∥uℓ(x̄, œ̄, t̄,θnn, θ

fix
a )− umpc(x̄, œ̄, t̄)∥Cu

+ ∥φt̄+∆t̄
ℓ (x̄, œ̄, t̄, θnn, θ

fix
a )− φt̄+∆t̄

mpc (x̄, œ̄, t̄)∥Cx

]
(7)

with respect to θnn in data-driven manner, replacing the expectation with an empirical average taken
over samples drawn from our offline dataset of expert demonstrations with Cx, Cu > 0 as constants
to balance between control-input and state-output imitation performance.

Now, we proceed by deriving analytical error bounds on system performance, ∥xℓ − xmpc∥,
when subject to errors in the learned guidance policy as well as additive disturbances. Consider the
dynamics in Eq. (5) with controller umpc(x̂(t), œ̂(t), t) = u∗(x̂(t), œ̂(t), t) and state xmpc. Suppose
that the error between the learned controller and the planned controller is bounded as

∥uℓ
(
x̄, œ̄, t̄, θnn, θ

fix
a

)
− umpc(x̄, œ̄, t̄)∥ ≤ ε (8)

where ε provides a bound on the offline learning error. In addition to the learning error above, we
consider additive disturbances to the learned policy uℓ + d, such that ∥d(x̄, œ̄, t)∥ ≤ d̄, ∀x̄, œ̄, t.

Next, we define a virtual system q(µ, t) parameterized by µ ∈ [0, 1] with particular solutions
q(µ = 1, t) = xmpc and q(µ = 0, t) = xℓ.27 The virtual system dynamics are given by

q̇ = ξ(q, xmpc, xℓ, uℓ, t) + dq(µ, xmpc, xℓ, uℓ, t) (9)

such that

ξ|q=xmpc = f(xmpc,œ, t) +B(xmpc,œ, t)umpc(x̂, œ̂, t)

ξ|q=xℓ
= f(xℓ,œ, t) +B(xℓ,œ, t)(uℓ(x̂, œ̂, t, θnn, θ

fix
a ) + d(x̄, œ̄, t))

and dq = µ
(
B(x,œ, t)(uℓ

(
x̄, œ̄, t̄, θnn, θ

fix
a

)
+ d(x̄, œ̄, t) − umpc(x̄, œ̄, t̄))

)
. In this sense, µ is a

parameter that allows one to continuously interpolate between the system dynamics according to
umpc and uℓ. With these preliminaries out of the way, we may now state our main theorem.

Theorem 1. If ∃β ∈ [0,∞) such that ∥B(x,œ, t)∥ ≤ β, ∀x,œ, t and umpc = u∗ such that
there exists a contraction metric M(q, xmpc, xℓ, uℓ, t) = Θ⊤Θ ≻ 0 and constants α,m,m ∈ R>0

satisfying the contraction conditions:

Ṁ +M
∂ξ

∂q
+

∂ξ

∂q

⊤
M ≤ −2αM (10)

mI ⪯M ⪯ mI (11)

∀q, xmpc, xℓ, uℓ, t, then the error e(t) = xmpc(t)− xℓ(t) is exponentially bounded as:

∥e(t)∥ ≤ V (0)
√
m

e−αt +
β(ε+ d̄)

α

√
m

m
(1− e−αt) (12)

where V (t) =
∫ xmpc

xℓ
∥Θδq∥.



Proof. Let V (q, δq, t) =
∫ xmpc

xℓ
∥Θδq∥, ∂µq = ∂q/∂µ and ∂µdq = ∂dq/∂µ. Differentiating and

using the contraction inequality in Eq. (10), for M = Θ⊤Θ,

d

dt
∥Θ(q, t)∂µq∥ = (2 ∥Θ(q, t)∂µq∥)−1 d

dt
∂µq

⊤M(q, t)∂µq

≤ −α ∥Θ(q, t)∂µq∥+ ∥Θ(q, t)∂µdq∥
(13)

From ∥∂µdq∥ ≤ β(ε+ d̄), ∥Θ(q, t)∥ ≤
√
m and integrating with respect to µ gives

d

dt

∫ 1

0
∥Θ∂µq∥ dµ ≤

∫ 1

0
−α ∥Θ∂µq∥ dµ+ β(ε+ d̄)

√
m

∫ 1

0
dµ (14)

which implies that V̇ ≤ −αV + β(ε+ d̄)
√
m. By the Comparison Lemma,28

V (t) ≤ e−αtV (0) +
β(ε+ d̄)

√
m

α
(1− e−αt). (15)

Since we know that xmpc−xℓ =
∫ xmpc

xℓ
δq, we additionally know that ∥xmpc−xℓ∥ = ∥

∫ xmpc

xℓ
δq∥ ≤∫ xmpc

xℓ
∥δq∥ ≤

∫ xmpc

xℓ
∥Θ−1∥∥Θδq∥, which means that V (t) =

∫ xmpc

xℓ
∥Θδq∥ is lower bounded by√

m∥xmpc − xℓ∥ ≤ V (t) at all points in time. Lastly, dividing by
√
m gives the desired result.

Figure 4 Visualization of the exponentially bounded error

The bound in Eq. (12) shows that the difference in trajectories ∥xmpc − xℓ∥ varies linearly with
respect to additive faults d̄ and learning error ε. Moreover, since we know that the system dynamics
under controller umpc (Eq. (1)) are exponentially stable—and that uℓ is within ε of umpc—we have
proven that our learning-based guidance policy provides an exponentially stabilizing solution to the
underlying optimal control problem (Eq. (3)) without the need for additional computation in the
presence of additive faults. Figure 4 shows a visualization of the exponentially bounded error.

The methodology presented throughout this section provides guarantees on the performance of
our learning-based offline guidance policy in the presence of disturbances and deviations between



the learned policy and the underlying MPC. However, due to its offline nature it is not capable of
adapting to other kinds of faults experienced by the spacecraft over the course of its deployment.
To this end, in the following section we augment this procedure with real-time online adaptation,
which will allow our algorithmic framework to detect, identify, and recover from faults in real time.

Real-Time Adaptation

The bound in Theorem 1 establishes a baseline for the performance of our system under nominal
conditions—that is, under conditions where our system experiences bounded disturbances and
deviations from an optimal reference. Having access to such an analytically-derived baseline is
powerful because it provides a means of data-driven fault detection. If the bound in Eq. (12) is
violated, then we know that the system is experiencing a fault beyond learning errors or noisy
actuation, requiring additional adaptation in order for the spacecraft to recover. In this section, we
present a real-time adaptation methodology grounded in the bounds presented in the previous
section that allows the system to recover from loss of actuator effectiveness faults. Consider the
actuator effectiveness parameter E(t) defined in Eq. (16) where e1(t), e2(t), and e3(t) represent
loss of effectiveness in the x, y, and z directions, respectively.

E(t) =

e1(t) 0 0
0 e2(t) 0
0 0 e3(t)

 (16)

If the commanded control input is ucmd then the actual control input uact is found utilizing
Eq. (17)

uact = E(t)ucmd (17)

If the bound in Eq. (12) is violated, our method proceeds by first identifying differences between
a trajectory utilizing the system’s nominal dynamics and its measured state-evolution. Using the
newly identified model, we compute an online adaptation to the learned guidance policy by
modulating θa(t) in real-time, until system performance returns to nominal conditions.

To this end, we compute two components, θdyn
a (t) ∈ Rm×m identifies differences between the

actual and nominal system dynamics, and θfault
a (t) ∈ Rm×m identifies parameters needed to adapt

the guidance policy and recover from the fault. The adaptation component ends up becoming the
fault adaptation parameter, θa(t) = θfault

a (t). In order to achieve such adaptation in real-time, we
compute θfault

a (t) and θ
dyn
a (t) every ∆t seconds. We discretize this interval into N timesteps tk

such that ∆t = Nδt and tk = kδt + t0, for all k ∈ {0, · · · , N}, where t0 is the time at the
moment in which the adaptation procedure begins. Then, we are able to frame surrogate data-driven
optimizations over θfault

a (t) and θ
dyn
a (t) by constructing a dataset D∆t of (x̂(tk), œ̂(tk), uℓ(tk)) for

all k ∈ {0, · · · , N}.

We proceed by identifying θ
dyn
a (t0), the adaptation parameters that best identify the system

dynamics over the previous ∆t seconds. In order to achieve this, we perform a ridge regularized
least-squares optimization over D∆t by framing the optimization problem in terms of the
spacecraft’s measured state x̂k = x̂(tk), and the expected spacecraft state given current model of
dynamics xk = x(tk). We calculate the expected spacecraft state through a linearized, discretized



version of the nonlinear continuous-time equations of motion based on a zero-order hold approach
as outlined by Morgan et al.,26

xk+1 = Ad
kxk +Bd

kuk + Cd
k , (18)

where uk = θ
dyn
a Φ(x(tk),œ(tk), tk, θnn) and θ

dyn
a (tk) = θ

dyn
a for all k since we hold it constant

as we optimize over the interval ∆t. Then, using this dynamics model we can express our ridge
regression problem as follows,

arg min
θ

dyn
a

1

N

N−1∑
k=0

∣∣∣∣x̂k+1 −
(
Ad

kxk +Bd
k(θ

dyn
a Φ(xk,œk, tk, θnn)) + Cd

k

)∣∣∣∣+ λ
∣∣∣∣θdyn

a

∣∣∣∣. (19)

Eq. (19) is solved efficiently online using the closed-form solution of a linear ridge-regression
problem.

Then, equipped with an estimate for θdyn
a we formulate a similar optimization over θfault

a . Rather
than optimize residuals between spacecraft dynamics estimates, we formulate this secondary
objective with respect to a desired trajectory xdes

k = xdes(tk). In doing so, we aim to use our
identified parameters to help the guidance policy compensate for loss of effectiveness faults in our
system. In this case, the optimization problem is as follows

arg min
θfault
a

1

N

N−1∑
k=0

∣∣∣∣xdes
k+1 −

(
Ad

kxk +Bd
k(θ

fault
a θdyn

a Φ(xk,œk, tk, θnn)) + Cd
k

)∣∣∣∣+ λ
∣∣∣∣θfault

a

∣∣∣∣. (20)

Lastly, we combine our adaptation methodologies into Algorithm 1. Using this approach, we are
able to perform real-time learning-based fault adaptation in spacecraft simulations, as the following
sections outline.

Algorithm 1: Real-Time Learning Based Adaptive Planning
Input : Trained SN-DNN Model from Eq. (6)
Output: Control Input uℓ and a(t) from Eq. (6)
t0, x0 ← initial time, relative position
tf ← final time
∆t← planning time interval
∆ta ← adaptation time interval
tN ← current time - t0
Generate xd(t) utilizing SN-DNN and RK45 Forward Integration
while tN < tf do

a(tN ) = a(tN−1)
if ||xN − xd(tN )|| > ϵ and tk > ∆ta then

a(tN ) = RealTimeAdaptation()
end
uℓ(tN ) = Φ(x̂N , œ̂N , tN )a(tk)

end



SIMULATION

Scenario

The proposed method is demonstrated on a rendezvous problem with an object such as a satellite
(target) in geostationary orbit drawing inspiration from the scenario in Chan et al.2 The task is to
generate a guidance policy for a spacecraft looking to rendezvous with a target. The spacecraft is
initialized at a position 100m away from the target and it must rendezvous at a location 5m away
from the target. The total time allocated for the maneuver (tf − t0) is set to be 2 hours (7200s). The
guidance policy is generated every 10s. The maximum mass-normalized control input is assumed
to be 0.02 m/s2.

Training Data Generation

500 candidate trajectories are generated with an 80-20 training/validation split. To generate each
trajectory, the spacecraft initial position relative to the target is sampled randomly from the surface
of a ball with radius 100 meters and the spacecraft desired position (ρ) relative to the target is also
sampled from the surface of a ball with radius 5 meters. Initial orbital parameters of the target
are chosen randomly from a distribution. Semimajor axis values (a) are chosen randomly from
Rgeo ± 25m where Rgeo is the radius of a geostationary orbit, eccentricity (e) values are randomly
chosen between 0 and 5.0048 × 10−4, inclination values (i) are chosen randomly between −0.1◦
and 0.1◦. Right ascension of the ascending node (RAAN - Ω), Argument of the periapsis (ω), and
true anomaly (ν) values are chosen randomly between 0 and 2π.

Control inputs umpc along each candidate trajectory are generated using the MPC-SCP method
described in a prior section. Trajectory flow φt+∆t

mpc along each candidate trajectory are generated by
numerical integration using an RK45 integrator. The MPC-SCP problem is solved with a time step
of 10 seconds, the same time step that the SN-DNN guidance policy is generated. The total time
that is allowed for the rendezvous process is 7200 seconds.

SN-DNN Training

A subset of the 288,000 total data points generated are utilized to train the SN-DNN. This is to
improve the generalization of the network while reducing the computational time and resources
required for training. 30,000 data points are chosen uniformly and randomly ensuring that 75
training data points are chosen from each of the 400 trajectories allocated for training and
approximately the same number of data points (41-42) are chosen at each time step within the time
interval. Of the 30,000 data points, 24,000 are utilized for training and 6,000 are utilized for
validation.

The input data are transformed as shown in Equation (21) similar to the transformation performed
by Tsukamoto et al.1

SN-DNN Input = (pi − ρi, ṗi, ρi, tf − ti, ωz,i, G(pi,œi)) (21)

Furthermore, the input and output of the SN-DNN are divided by the absolute value of the largest
value in each input parameter of the training data. This ensures that all training inputs and outputs



to the SN-DNN are between zero and one and minimizes the risk of inputs with larger magnitudes
dominating the network.

The neural network has an input layer with 14 neurons, three hidden layers with 32, 64, and 64
neurons and an output layer that outputs a control input utilizing 3 neurons. The activation function
is selected to be rectified linear unit (ReLU). Spectral normalization is applied to each layer to
control the Lipschitz constant of the network. The parameter cx is set to 108 and the parameter cu is
set to 109 as these parameters were found to give the best results. The Adaptive Moment Estimation
(Adam) optimizer is utilized. The SN-DNN is trained for 1000 epochs.

Error Detection and Adaptation

For error detection and adaptation, the initial θfaulta and θdyna are set to the identity matrices for
initial model training. While Theorem 1 gave a theoretical formulation for a bound between
∥xℓ − xmpc∥, since the original system is contracting the bound would apply for any given desired
trajectory xd as long as the controller is still feasible. Since the xmpc trajectory is not available to
us in space, errors are detected based on the deviation from a desired xd trajectory. The xd
trajectory is calculated from the initial spacecraft position x0. The trajectory is generated by
generating a simulated guidance policy from the SN-DNN for future time-steps and performing
forward integration using RK-45. This would simulate a desired trajectory for the spacecraft given
that there are no faults or disturbances (perfect sensing and actuation). Thus although the derived
bound is given in terms of a perfect MPC solution in simulation a bound is determined utilizing the
deviation from an initially generated trajectory. In this work, a bound is selected through
experimentation to demonstrate the online adaptation technique. However, the derivation of the
theoretical bound provides justification for being able to utilize a bound to detect errors. Future
work will investigate the use of the theoretically introduced bound.

For the online θfaulta and θdyna optimization problems, the regularization parameter λ is set to a
value of 10−25 demonstrating that for the particular data considered in this simulation regularization
may not have been necessary.

RESULTS

This section describes the results for the geostationary orbit scenario outlined in the Simulation
section. Table 1 provides the final position error averaged over 100 trials for each experiment that is
run. The final delivery error is calculated by taking the two-norm of the x, y, and z position delivery
errors.

Table 1 Geostationary Orbit Table of Errors

Simulation Type Overall Error (m)

No Fault 1.33
Loss of Actuator Effectiveness with Real-Time Adaptive Policy 3.05

Loss of Actuator Effectiveness with No Policy 24.79
Real-Time Introduction of Loss of Actuator Effectiveness 4.29

The experiment labeled No Fault in the table is the baseline case which utilizes imitation learning
with no loss of actuator effectiveness. Figure 5 displays the results for this case. The average



Figure 5 Position and Control Input from the SN-DNN for the nominal cause where there is no fault

delivery error of 1.33m is due to errors from the learning process. The forward and backward
integration process along with a min-norm controller as implemented in prior work1 can be utilized
to bring the actual delivery error to zero despite the planning delivery error being 1.33 meters.

Figure 6 Position and control input for the second simulation where there is a fault
during the entire time period and adaptation is performed

The experiment labeled Loss of Actuator Effectiveness with Real-Time Adaptive Policy
demonstrates the use of our adaptation policy for a case with loss of actuator effectiveness for the
entire 2-hour period. The loss of actuator effectiveness, E(t) is set to a constant value through the
time interval where e1(t) = 0.7, e2(t) = 0.6 and e3(t) = 0.8. The adaptive guidance control



policy is run for the entire 2-hour period where the optimization problem is solved every k = 30
steps. Figure 6 displays the results from this case. In Figure 6, examining the spike on the graph of
commanded control input (Adapted SN-DNN output) shows where the adaptation takes place.

Figure 7 Position and control input for the third simulation where there is a fault
during the entire time period and no adaptation is performed

The experiment labeled Loss of Actuator Effectiveness with No Policy shows the final delivery
error with a loss of actuator effectiveness term without our adaptation policy. It is important to note
that the network even without adaptation will inherently compensate for loss of actuator
effectiveness by outputting higher control inputs to compensate for the larger pt − ρt at any given
time after the fault. However, without adaptation, this results in a large delivery error. Figure 7
displays results for this case.

The experiment labeled Real-Time Introduction of Loss of Actuator Effectiveness is the case
where a fault is introduced into the system at a time of 1000 seconds. The fault is detected and the
adaptation process begins when the error goes over 0.25 meters. Figure 8 shows results for this
case. Looking at the Rate of Change of Error plot makes the adaptation extremely clear. When the
fault is introduced, the error rate of changes starts to increase. After adaptation is performed, the
error rate of change (between the original planned trajectory and the spacecraft position) begins to
decrease showing that the fault has been compensated for. The error graph continues to increase
however even after adaptation as the error is calculated between the original planned trajectory and
the location of the spacecraft. However, after adaptation the spacecraft may not necessarily follow
the original planned trajectory.

CONCLUSION

This work proposed an algorithmic framework for spacecraft rendezvous operations under loss
of actuator effectiveness faults. A three-pronged approach was proposed including an
analytically-derived error bound to allow our algorithm to detect fault-driven deviations from the
guidance policy, identification of fault parameters utilizing regularized regression, and online



Figure 8 Position and control input for the fourth simulation where a fault is
introduced into the system and bounds are utilized to determine when to begin
adaptation

adaptation of the neural network guidance policy to enable system recovery. We demonstrated the
potential of this method in simulations. Further work will focus on incorporating a variety of
disturbances and faults into the framework. Additionally, further work will focus on alternative
approaches to perform adaptation to neural-network parameters.
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NOTATION

Table 2 Notation

Om×n = m× n zero matrix
Im×n = m× n identity matrix

x(t), x̂(t), xmpc(t) = true, estimated, and MPC generated state of the spacecraft relative
to ISO in the LVLH frame at time t

u, uℓ, umpc = true, learned, and MPC generated control policy
œ(t), œ̂(t) = true and estimated orbital elements at time t
p(t), p̂(t) = true and estimated position of the spacecraft relative to ISO in the

LVLH frame at time t
ρ = terminal position of the spacecraft relative to ISO

φt
ℓ, φ

t
mpc = learned and MPC solution trajectories at time t

θnn, θa = neural network and adaptation parameters
a(t) = adaptation mapping weights at time t
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